12 Enlightening Facts About Body Fat

iStock
iStock

The human body is an amazing thing. For each one of us, it’s the most intimate object we know. And yet most of us don’t know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

Let’s face it: Fat gets a bad rap. Entire industries have been built upon the criticism and attempted reduction of body fat. But fat, formally known as adipose tissue, is a crucial part of your hormonal and metabolic processes. Adipose tissue is a major site of energy storage, and has a key role in the regulation of metabolism and insulin production in your body—not to mention, it helps keep you warm. Having too much fat can be a bad thing, but having too little can pose problems as well.

Fat is stored in the body in the form of triglycerides, free fatty acid (FFA) molecules that are held together by a molecule called glycerol, a type of alcohol. Most of our body fat is stored in fat cells called adipocytes, but fat can also be stored as droplets within skeletal muscle cells. In addition, some triglycerides even roam freely in your blood stream. (These are the ones most easily broken down through exercise.)

Before you demonize fat, take a look at these 12 facts about your adipose tissue.

1. FAT IS AN ORGAN …

Your fat is not just a layer of padding—it’s actually an organ of the endocrine system. “Fat secretes a lot of hormones, while activating or deactivating many more,” Indraneil Mukherjee, a doctor at The Southeastern Center for Digestive Disorders and Pancreatic Cancer, Florida, tells Mental Floss. It’s comprised of adipocytes and fat cell types called the stroma-vascular fraction, which are made up of growth factors—messengers the body uses to signal cells—as well as stem cells, blood cells, and a host of other cell types.

2. … AND IT PLAYS A KEY ROLE IN YOUR METABOLISM.

Adipose tissue is “a metabolically dynamic organ,” according to a study in Archives of Medical Science, whose primary job is to store excess energy. It also synthesizes “a number of biologically active compounds that regulate metabolic homeostasis.” In other words, it controls your body’s energy balance by regulating appetite signals from the central nervous system and metabolic activity in peripheral tissues. Chronic over-nutrition—eating too much on a regular basis—can cause inflammatory responses and metabolic disorders that can lead to disease: most obviously, obesity.

3. WHITE FAT GIVES YOU ENERGY.

White adipose tissue stores your body’s reserves of energy, and the endocrine cells mentioned above, which secrete crucial hormones and molecules. There are even “adipose depots” where white adipose tissue tends to gather more easily, located around organs such as the heart, lung, and kidney.

4. BROWN FAT KEEPS YOU WARM—AND IS NEWLY DISCOVERED IN ADULTS.

Brown adipose tissue is typically found in newborn human babies and hibernating mammals, according to a study in Frontiers in Endocrinology. Its main function is to generate heat—keeping you warm—and to do so, it contains more mitochondria and capillaries than white adipose tissue.

Up until recently, researchers weren’t sure brown fat existed in adults. “There's a lot of excitement around the discovery,” Yi Sherry Zhang, an assistant professor at the TOPS Obesity and Metabolic Research Center at the Medical College of Wisconsin, tells Mental Floss. “It helps to regulate energy expenditure. This is important because drugs that target this type of fat may provide a new way to treat obesity.”

5. TOO MUCH OR TOO LITTLE FAT CAN INCREASE YOUR RISK OF DIABETES.

While it is now commonly known that obesity—when a person carries more weight than is considered healthy for their height—can predispose a person to type 2 diabetes, too little fat has a similar effect, according to the American Diabetes Association. Type 2 diabetes is a group of diseases in which the body has an impaired ability to produce or respond to the hormone insulin. And it turns out having too little fat is due in part to a lack of a lipid-storing “compartments,” which leads to an imbalance of triglyceride and free fatty acid levels, leading to insulin resistance.

6. YOUR LEVEL OF BODY FAT MAY BE INFLUENCED BY YOUR MICROBIOME.

Researchers at McMaster University have begun studying a new realm of therapies known as postbiotics, the by-products that bacteria leave behind, which help the body synthesize insulin more effectively. In a new study, scientists discovered that administering postbiotics to mice with obesity reduced their insulin sensitivity—without any need for weight loss—heralding promising potential treatments for obesity with type 2 diabetes.

7. EXCESS FAT IS THE PERFECT ENVIRONMENT FOR CANCER.

Adipose tissue also secrets “hormones that make cancer cells grow quicker,” says Mukherjee. In fact, when adipose tissue expands, it also allows more immune cells to enter the tissue. These B and T immune cells secrete pro-inflammatory molecules such as adipokines [PDF]—peptides that signal other organs—and cytokines, which create the perfect microenvironment for tumor growth, according to a study in Frontiers in Physiology.

8. YOU CAN MOVE YOUR FAT AROUND.

If you are so inclined, Mukherjee points out that “fat transplant is legal”—so you can technically surgically move it from one body part to another without any harm done, “for vanity,” he says. These so-called fat transfers can augment a formerly flat part of your body, but buyer beware—not only can you experience the side effects of surgery such as swelling, bruising, several weeks of recovery time, you can develop lumps.

9. DIETING DOESN’T REDUCE THE NUMBER OF FAT CELLS YOU HAVE.

The number of your fat cells can increase, but once the cellular structures have developed, they never go away. “With dieting, they just get smaller,” Mukherjee says. Zhang adds, “Each of us has 10 billion to 30 billion fat cells in our body.” Obese people can eventually have up to 100 billion fat cells.

10. YOUR FAT COMMUNICATES WITH OTHER ORGANS ALL OVER THE BODY.

It does so by sending out small molecules called microRNAs (miRNAs) that control gene activity, according to a study in Nature. After injecting genetically modified mice with fluorescent liver cell miRnas, researchers saw a significant drop in liver cell fluorescence, which suggested that the fat tissue was communicating with the liver to regulate gene expression. They hope to further study this process to discover new treatment methods for obesity and type 2 diabetes.

11. THE GENETIC UNDERPINNINGS OF FAT MAY HELP TREAT OBESITY.

“We are beginning to understand the genetic basis for fat distribution and obesity,” says Zhang. “We have recently published genes that play a role in determining how body fat is distributed,” she continues. She hopes that these discoveries will help researchers understand the genetic component of common disorders like metabolic syndrome, type 2 diabetes, and obesity.

12. IN FACT, EPIGENETICS IS THE NEW FRONTIER OF FAT RESEARCH.

Researchers studying fat to better understand metabolic disorders recently focused on the field of epigenetics, which is the study of “the various elements that regulate which genes are active in particular cells and how they are regulated,” Zhang says. She believes that epigenetic changes are likely to play a critical role in the development of chronic disorders like metabolic syndrome and type 2 diabetes. “Unlike the genetic code, it is possible to reverse and alter these elements, which means we can potentially develop new ways to prevent and treat these common disorders.”

25 Amazing Facts About the Human Body

iStock.com/kali9
iStock.com/kali9

The human body is an amazing piece of machinery—with a few weird quirks.

  1. It’s possible to brush your teeth too aggressively. Doing so can wear down enamel and make teeth sensitive to hot and cold foods.

  2. Goose bumps evolved to make our ancestors’ hair stand up, making them appear more threatening to predators.

Woman's legs with goosebumps
iStock.com/MyetEck
  1. Wisdom teeth serve no purpose. They’re left over from hundreds of thousands of years ago. As early humans’ brains grew bigger, it reduced space in the mouth, crowding out this third set of molars.

  2. Scientists aren't exactly sure why we yawn, but it may help regulate body temperature.

  3. Your fingernails don’t actually grow after you’re dead.

  4. If they were laid end to end, all of the blood vessels in the human body would encircle the Earth four times.

  5. Humans are the only animals with chins.

    An older woman's chin
    iStock.com/mhelm3011
    1. As you breathe, most of the air is going in and out of one nostril. Every few hours, the workload shifts to the other nostril.

    2. Blood makes up about 8 percent of your total body weight.

    3. The human nose can detect about 1 trillion smells.

    4. You have two kidneys, but only one is necessary to live.

    5. Belly buttons grow special hairs to catch lint.

      A woman putting her hands in a heart shape around her belly button
      iStock.com/PeopleImages
      1. The satisfying sound of cracking your knuckles comes from gas bubbles bursting in your joints.

      2. Skin is the body’s largest organ and can comprise 15 percent of a person’s total weight.

      3. Thumbs have their own pulse.

      4. Your tongue is made up of eight interwoven muscles, similar in structure to an elephant’s trunk or an octopus’s tentacle.

      5. On a genetic level, all human beings are more than 99 percent identical.

        Identical twin baby boys in striped shirts
        iStock.com/BorupFoto
        1. The foot is one of the most ticklish parts of the body.

        2. Extraocular muscles in the eye are the body’s fastest muscles. They allow both of your eyes to flick in the same direction in a single 50-millisecond movement.

        3. A surgical procedure called a selective amygdalohippocampectomy removes half of the brain’s amygdala—and with it, the patient’s sense of fear.

        4. The pineal gland, which secretes the hormone melatonin, got its name from its shape, which resembles a pine nut.

        5. Hair grows fast—about 6 inches per year. The only thing in the body that grows faster is bone marrow.

          An African-American woman drying her hair with a towel and laughing
          iStock.com/GlobalStock
          1. No one really knows what fingerprints are for, but they might help wick water away from our hands, prevent blisters, or improve touch.

          2. The heart beats more than 3 billion times in the average human lifespan.

          3. Blushing is caused by a rush of adrenaline.

12 Intriguing Facts About the Intestines

When we talk about the belly, gut, or bowels, what we're really talking about are the intestines—long, hollow, coiled tubes that comprise a major part of the digestive tract, running from the stomach to the anus. The intestines begin with the small intestine, divided into three parts whimsically named the duodenum, jejunum, and ileum, which absorb most of the nutrients from what we eat and drink. Food then moves into the large intestine, or colon, which absorbs water from the digested food and expels it into the rectum. That's when sensitive nerves in your rectum create the sensation of needing to poop.

These organs can be the source of intestinal pain, such as in irritable bowel syndrome, but they can also support microbes that are beneficial to your overall health. Here are some more facts about your intestines.

1. The intestines were named by medieval anatomists.

Medieval anatomists had a pretty good understanding of the physiology of the gut, and are the ones who gave the intestinal sections their names, which are still used today in modern anatomy. When they weren't moralizing about the organs, they got metaphorical about them. In 1535, the Spanish doctor Andrés Laguna noted that because the intestines "carry the chyle and all the excrement through the entire region of the stomach as if through the Ocean Sea," they could be likened to "those tall ships which as soon as they have crossed the ocean come to Rouen with their cargoes on their way to Paris but transfer their cargoes at Rouen into small boats for the last stage of the journey up the Seine."

2. Leonardo da Vinci believed the intestines helped you breathe.

Leonardo mistakenly believed the digestive system aided respiratory function. In 1490, he wrote in his unpublished notebooks, "The compressed intestines with the condensed air which is generated in them, thrust the diaphragm upwards; the diaphragm compresses the lungs and expresses the air." While that isn't anatomically accurate, it is true that the opening of the lungs is helped by the relaxation of stomach muscles, which does draw down the diaphragm.

3. Your intestines could cover two tennis courts ...

Your intestines take up a whole lot of square footage inside you. "The surface area of the intestines, if laid out flat, would cover two tennis courts," Colby Zaph, a professor of immunology in the department of biochemistry and molecular biology at Melbourne's Monash University, tells Mental Floss. The small intestine alone is about 20 feet long, and the large intestine about 5 feet long.

4. ... and they're pretty athletic.

The process of moving food through your intestines requires a wave-like pattern of muscular action, known as peristalsis, which you can see in action during surgery in this YouTube video.

5. Your intestines can fold like a telescope—but that's not something you want to happen.

Intussusception is the name of a condition where a part of your intestine folds in on itself, usually between the lower part of the small intestine and the beginning of the large intestine. It often presents as severe intestinal pain and requires immediate medical attention. It's very rare, and in children may be related to a viral infection. In adults, it's more commonly a symptom of an abnormal growth or polyp.

6. Intestines are very discriminating.

"The intestines have to discriminate between good things—food, water, vitamins, good bacteria—and bad things, such as infectious organisms like viruses, parasites and bad bacteria," Zaph says. Researchers don't entirely know how the intestines do this. Zaph says that while your intestines are designed to keep dangerous bacteria contained, infectious microbes can sometimes penetrate your immune system through your intestines.

7. The small intestine is covered in "fingers" ...

The lining of the small intestine is blanketed in tiny finger-like protrusions known as villi. These villi are then covered in even tinier protrusions called microvilli, which help capture food particles to absorb nutrients, and move food on to the large intestine.

8. ... And you can't live without it.

Your small intestine "is the sole point of food and water absorption," Zaph says. Without it, "you'd have to be fed through the blood."

9. The intestines house your microbiome. 

The microbiome is made up of all kinds of microorganisms, including bacteria, viruses, fungi, and protozoans, "and probably used to include worm parasites too," says Zaph. So in a way, he adds, "we are constantly infected with something, but it [can be] helpful, not harmful."

10. Intestines are sensitive to change.

Zaph says that many factors change the composition of the microbiome, including antibiotics, foods we eat, stress, and infections. But in general, most people's microbiomes return to a stable state after these events. "The microbiome composition is different between people and affected by diseases. But we still don't know whether the different microbiomes cause disease, or are a result in the development of disease," he says.

11. Transferring bacteria from one gut to another can transfer disease—or maybe cure it.

"Studies in mice show that transplanting microbes from obese mice can transfer obesity to thin mice," Zaph says. But transplanting microbes from healthy people into sick people can be a powerful treatment for some intestinal infections, like that of the bacteria Clostridium difficile, he adds. Research is pouring out on how the microbiome affects various diseases, including multiple sclerosis, Parkinson's, and even autism.

12. The microbes in your intestines might influence how you respond to medical treatments.

Some people don't respond to cancer drugs as effectively as others, Zaph says. "One reason is that different microbiomes can metabolize the drugs differently." This has huge ramifications for chemotherapy and new cancer treatments called checkpoint inhibitors. As scientists learn more about how different bacteria metabolize drugs, they could possibly improve how effective existing cancer treatments are.

SECTIONS

arrow
LIVE SMARTER