An illustration showing the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other.
An illustration showing the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other.
LIGO/T. Pyle

5 Things We Know About Gravitational Waves—And 2 That Are a Mystery

An illustration showing the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other.
An illustration showing the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other.
LIGO/T. Pyle

Gravitational waves, first detected in fall 2015 and then again a few months later, are making headlines this week following the detection of a third pair of colliding black holes. This particular duo is located a whopping 3 billion light years from Earth, making it the most distant source of gravitational waves discovered so far.

The signal from this latest black hole merger tripped the detectors at the twin LIGO facilities on January 4 of this year (the acronym stands for Laser Interferometer Gravitational-wave Observatory). The newly created black hole—the result of this latest cosmic collision—weighs in at about 49 times the mass of the Sun, putting it in-between the two earlier black hole collisions that LIGO recorded, in terms of size. There’s now ample evidence that black holes can weigh more than 20 solar masses—a finding that challenges the traditional understanding of black hole formation. “These are objects we didn’t know existed before LIGO detected them,” David Shoemaker, an MIT physicist and spokesperson for the LIGO collaboration, said in a statement.

Gravitational waves are shaping up to be the hot new astronomical tool of the 21st century, offering glimpses into the universe’s darkest corners and providing insights into the workings of the cosmos that we can’t get by any other means. Here, then, are five things we know about these cosmic ripples, and a couple more things that we haven’t quite figured out yet:

1. THEY'D HAVE MADE EINSTEIN SMILE.

We knew, or at least strongly suspected, that gravitational waves existed long before their discovery in 2015. They were predicted by Einstein’s theory of gravity, known as general relativity, published just over 100 years ago. The first black hole mergers observed by LIGO produced tell-tale cosmic signatures that meshed perfectly with what Einstein’s theory predicted. But the black hole collision announced this week may yield yet another feather for Einstein’s cap. It involves something called “dispersion.” When waves of different wavelengths pass through a physical medium—like light passing through glass, for example—the rays of light diverge (this is the how a prism creates a rainbow). But Einstein’s theory says gravitational waves ought to be immune to this sort of dispersion—and this is exactly what the observations suggest, with this latest black hole merger providing the strongest confirmation so far. (This Einstein fellow was pretty bright!)

2. THEY'RE RIPPLES IN THE FABRIC OF SPACE-TIME.

According to Einstein’s theory, whenever a massive object is accelerated, it creates ripples in space-time. Typically, these cosmic disturbances are too small to notice; but when the objects are massive enough—a pair of colliding black holes, for example—then the signal may be large enough to trigger a “blip” at the LIGO detectors, the pair of gravitational wave laboratories located in Louisiana and in Washington state. Even with colliding black holes, however, the ripples are mind-bogglingly small: When a gravitational wave passes by, each 2.5-mile-long arm of the L-shaped LIGO detectors gets stretched and squeezed by a distance equivalent to just 1/1000th of the width of a proton.

3. THEY LET US "LISTEN" TO THE UNIVERSE.

At least in a figurative sense, gravitational waves let us “listen in” on some of the universe’s most violent happenings. In fact, the way that gravitational waves work is closely analogous to sound waves or water waves. In each case, you have a disturbance in a particular medium that causes waves to spread outward, in ever-increasing circles. (Sound waves are a disturbance in the air; water waves are a disturbance in water—and in the case of gravitational waves, it’s a disturbance in the fabric of space itself.) To “hear” gravitational waves, you just have to convert the signals received by LIGO into sound waves. So what do we actually hear? In the case of colliding black holes, it’s something like a cosmic “chirp”—a kind of whooping sound that progresses quickly from low pitch to high.

4. THEY'VE SHOWN US THAT YOU REALLY DON'T WANT TO GET TOO CLOSE TO A PAIR OF COLLIDING BLACK HOLES.

Thanks to gravitational waves, we’re learning a lot about that most mysterious of objects, the black hole. When two black holes collide, they form an even bigger black hole—but not quite as large as you’d expect from simply adding up the masses of the two original black holes. That’s because some of the mass gets converted into energy, via Einstein’s famous equation, E=mc2. The magnitude of the explosion is truly staggering.

As astronomer Duncan Brown told Mental Floss last June: “When a nuclear bomb explodes, you’re converting about a gram of matter—about the weight of a thumb-tack—into energy. Here, you’re converting the equivalent of the mass of the Sun into energy, in a tiny fraction of a second.” The blast could produce more energy than all the stars in the universe—for a split-second.

5. THEY MIGHT BE POWERFUL ENOUGH TO KICK A BLACK HOLE OUT OF A GALAXY.

This spring, astronomers discovered a “rogue” black hole moving speedily away from a distant galaxy known as 3C186, located some 8 billion light years from Earth. The black hole is believed to weigh as much as 1 billion Suns—which means it must have received quite a kick, to set it in motion (its speed was determined to be around 5 million miles per hour, or a bit less than 1 percent of the speed of light). Astronomers have suggested that the necessary energy may have come from gravitational waves produced by a pair of very heavy black holes that collided near the galaxy’s center.

But there’s still plenty we’d like to know about gravitational waves—and about the objects they let us probe. For example …

6. WE DON'T KNOW IF GRAVITATIONAL WAVES CONTRIBUTE TO "DARK MATTER."

Most of the mass of the universe—about 85 percent—is stuff we can’t see; astronomers call this unseen material “dark matter.” Exactly what this dark stuff is has been the subject of intense debate for decades. The leading theory is that dark matter is made up of exotic particles created soon after the big bang. But some physicists have speculated that so-called “primordial black holes”—black holes created in the first second of the universe’s existence—might make up a significant fraction of the mysterious dark matter. The theorists who back this idea say that it could help to explain the unusually high masses of the black hole binary systems that LIGO has detected so far.

7. WE DON'T KNOW IF THEY ARE EVIDENCE OF DIMENSIONS BEYOND THE ONES WE PERCEIVE.

Particle physicists and cosmologists have long speculated about the existence of “extra dimensions” beyond the four we experience (three for space and one for time). It was hoped that experiments at the Large Hadron Collider would offer hints of these dimensions, but no such evidence has turned up so far. Some physicists, however, suggest that gravitational waves might provide a clue. They speculate that gravity could freely spread out over all of the dimensions, perhaps explaining why gravity is such a weak force (it’s by far the weakest of the four known forces in nature). Further, they say that the existence of extra dimensions would leave their mark on the gravitational waves that we measure here on Earth. So, stay tuned: It’s only been a bit more than a year since we first detected gravitational waves; no doubt they have much more to tell us about our universe.

nextArticle.image_alt|e
An illustration showing the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other.
Illustration by Mental Floss / Images: iStock
arrow
The Body
10 Facts About the Appendix
Illustration by Mental Floss / Images: iStock
Illustration by Mental Floss / Images: iStock

Despite some 500 years of study, the appendix might be one of the least understood structures in the human body. Here's what we know about this mysterious organ.

1. THE ANCIENT EGYPTIANS CALLED IT THE "WORM" OF THE BOWEL.

The human appendix is small, tube-shaped, and squishy, giving ancient Egyptians, who encountered it when preparing bodies for funerary rites, the impression of a worm. Even today, some medical texts refer to the organ as vermiform—Latin for "worm-like."

2. THE APPENDIX SHOWS UP IN LEONARDO DA VINCI’S DRAWINGS.

The earliest description of a human appendix was written by the Renaissance physician-anatomist Jacopo Berengario da Carpi in 1521. But before that, Leonardo da Vinci is believed to drawn the first depiction of the organ in his anatomical drawings in 1492. Leonardo claimed to have dissected 30 human corpses in his effort to understand the way the body worked from mechanical and physiological perspectives.

3. IT'S ABOUT THE SIZE OF A PINKY FINGER.

The appendix is a small pouch connected to the cecum—the beginning of the large intestine in the lower right-hand corner of your abdomen. The cecum’s job is to receive undigested food from the small intestine, absorb fluids and salts that remain after food is digested, and mix them with mucus for easier elimination; according to Mohamad Abouzeid, M.D., assistant professor and attending surgeon at NYU Langone Medical Center, the cecum and appendix have similar tissue structures.

4. CHARLES DARWIN THOUGHT IT WAS A VESTIGIAL ORGAN …

The appendix has an ill-deserved reputation as a vestigial organ—meaning that it allegedly evolved without a detectable function—and we can blame Charles Darwin for that. In the mid-19th century, the appendix had been identified only in humans and great apes. Darwin thought that our earlier ancestors ate mostly plants, and thus needed a large cecum in which to break down the tough fibers. He hypothesized that over time, apes and humans evolved to eat a more varied and easier-to-digest diet, and the cecum shrank accordingly. The appendix itself, Darwin believed, emerged from the folds of the wizened cecum without its own special purpose.

5. … BUT THE APPENDIX PROBABLY EVOLVED TO HELP IMMUNE FUNCTION.

The proximity and tissue similarities between the cecum and appendix suggest that the latter plays a part in the digestive process. But there’s one noticeable difference in the appendix that you can see only under a microscope. “[The appendix] has a high concentration of the immune cells within its walls,” Abouzeid tells Mental Floss.

Recent research into the appendix's connection to the immune system has suggested a few theories. In a 2015 study in Nature Immunology, Australian researchers discovered that a type of immune cells called innate lymphoid cells (ILCs) proliferate in the appendix and seem to encourage the repopulation of symbiotic bacteria in the gut. This action may help the gut recover from infections, which tend to wipe out fluids, nutrients, and good bacteria.

For a 2013 study examining the evolutionary rationale for the appendix in mammal species, researchers at Midwestern University and Duke University Medical Center concluded that the organ evolved at least 32 times among different lineages, but not in response to dietary or environmental factors.

The same researchers analyzed 533 mammal species for a 2017 study and found that those with appendices had more lymphatic (immune) tissue in the cecum. That suggests that the nearby appendix could serve as "a secondary immune organ," the researchers said in a statement. "Lymphatic tissue can also stimulate growth of some types of beneficial gut bacteria, providing further evidence that the appendix may serve as a 'safe house' for helpful gut bacteria." This good bacteria may help to replenish healthy flora in the gut after infection or illness.

6. ABOUT 7 PERCENT OF AMERICANS WILL GET APPENDICITIS DURING THEIR LIFETIMES.

For such a tiny organ, the appendix gets infected easily. According to Abouzeid, appendicitis occurs when the appendix gets plugged by hardened feces (called a fecalith or appendicolith), too much mucus, or the buildup of immune cells after a viral or bacterial infection. In the United States, the lifetime risk of getting appendicitis is one in 15, and incidence in newly developed countries is rising. It's most common in young adults, and most dangerous in the elderly.

When infected, the appendix swells up as pus fills its interior cavity. It can grow several times larger than its average 3-inch size: One inflamed appendix removed from a British man in 2004 measured just over 8 inches, while another specimen, reported in 2007 in the Journal of Clinical Pathology, measured 8.6 inches. People with appendicitis might feel generalized pain around the bellybutton that localizes on the right side of the abdomen, and experience nausea or vomiting, fever, or body aches. Some people also get diarrhea.

7. APPENDECTOMIES ARE ALMOST 100 PERCENT EFFECTIVE FOR TREATING APPENDICITIS.

Treatment for appendicitis can go two ways: appendectomy, a.k.a. surgical removal of the appendix, or a first line of antibiotics to treat the underlying infection. Appendectomies are more than 99 percent effective against recurring infection, since the organ itself is removed. (There have been cases of "stump appendicitis," where an incompletely removed appendix becomes infected, which often require further surgery.)

Studies show that antibiotics produce about a 72 percent initial success rate. “However, if you follow these patients out for about a year, they often get recurrent appendicitis,” Abouzeid says. One 2017 study in the World Journal of Surgery followed 710 appendicitis patients for a year after antibiotic treatment and found a 26.5 percent recurrence rate for subsequent infections.

8. AN INFECTED APPENDIX DOESN’T ACTUALLY BURST.

You might imagine a ruptured appendix, known formally as a perforation, being akin to the "chestbuster" scene in Alien. Abouzeid says it's not quite that dramatic, though it can be dangerous. When the appendix gets clogged, pressure builds inside the cavity of the appendix, called the lumen. That chokes off blood supply to certain tissues. “The tissue dies off and falls apart, and you get perforation,” Abouzeid says. But rather than exploding, the organ leaks fluids that can infect other tissues.

A burst appendix is a medical emergency. Sometimes the body can contain the infection in an abscess, Abouzeid says, which may be identified through CT scans or X-rays and treated with IV antibiotics. But if the infection is left untreated, it can spread to other parts of the abdomen, a serious condition called peritonitis. At that point, the infection can become life-threatening.

9. SURGEONS CAN REMOVE AN APPENDIX THROUGH A TINY INCISION.

In 1894, Charles McBurney, a surgeon at New York's Roosevelt Hospital, popularized an open-cavity, muscle-splitting technique [PDF] to remove an infected appendix, which is now called an open appendectomy. Surgeons continued to use McBurney's method until the advent of laparoscopic surgery, a less invasive method in which the doctor makes small cuts in the patient's abdomen and threads a thin tube with a camera and surgical tools into the incisions. The appendix is removed through one of those incisions, which are usually less than an inch in length.

The first laparoscopic appendectomies were performed by German physician Kurt Semm in the early 1980s. Since then, laparoscopic appendectomies have become the standard treatment for uncomplicated appendicitis. For more serious infections, open appendectomies are still performed.

10. AN APPENDIX ONCE POSTPONED A ROYAL CORONATION.

When the future King Edward VII of Great Britain came down with appendicitis (or "perityphlitis," as it was called back then) in June 1902, mortality rates for the disease were as high as 26 percent. It was about two weeks before his scheduled coronation on June 26, 1902, and Edward resisted having an appendectomy, which was then a relatively new procedure. But surgeon and appendicitis expert Frederick Treves made clear that Edward would probably die without it. Treves drained Edward's infected abscess, without removing the organ, at Buckingham Palace; Edward recovered and was crowned on August 9, 1902.

11. THE WORLD'S LONGEST APPENDIX MEASURED MORE THAN 10 INCHES.

On August 26, 2006, during an autopsy at a Zagreb, Croatia hospital, surgeons obtained a 10.24-inch appendix from 72-year-old Safranco August. The deceased currently holds the Guinness World Record for "largest appendix removed."

nextArticle.image_alt|e
An illustration showing the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other.
iStock
arrow
science
Science Has a Good Explanation For Why You Can't Resist That Doughnut
iStock
iStock

Unless you’re one of those rare people who doesn’t like sweets, the lure of a glazed or powdered doughnut is often too powerful to resist. The next time you succumb to that second or third Boston cream, don’t blame it on weak willpower—blame it on your brain.

As the New Scientist reports, a Yale University study published in the journal Cell Metabolism provides new evidence that foods rich in both carbohydrates and fats fire up the brain’s reward center more than most foods. For the study, volunteers were shown pictures of carb-heavy foods (like candy), fatty foods (like cheese), and foods high in both (like doughnuts). They were then asked to bid money on the food they wanted to eat most, all while researchers measured their brain activity.

Not only were volunteers willing to pay more for doughnuts and similar foods, but foods high in carbs and fat also sparked far more activity in the striatum, the area of the brain where dopamine is released. (Chocolate is one of the foods most commonly associated with increases in dopamine, working in the same way as drugs like cocaine and amphetamines.)

Presented with these findings, researcher Dana Small theorized that the brain may have separate systems to assess fats and carbs. Modern junk foods that activate both systems at once may trigger a larger release of dopamine as a result.

This study doesn’t entirely explain why different people crave different foods, though. Much of it has to do with our habits and the foods we repeatedly gravitate towards when we want to feel happy or alleviate stress. Another study from 2015 found that certain treats associated with high levels of reward in the brain—like pizza, chocolate, chips, and cookies—were considered to be the most addictive foods (doughnuts didn’t make the top 20, though).

It's still possible to turn down foods that are bad for you, though. While many people try to improve their self-control, one of the most effective ways to avoid an undesired outcome is to remove the temptation completely. Free doughnuts in the break room? Stay far away.

[h/t New Scientist]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios