What Is the Dew Point, and How Does It Relate to Humidity?


Humidity has been a part of weather forecasts for as long as we’ve gotten our news over the air. At the beginning of most weather forecasts, our friendly neighborhood weatherperson tells us the sky conditions at the moment, the current temperature, and the relative humidity. Over the past couple of decades, though, the relative humidity has started to fall by the wayside in favor of the dew point. The dew point is a much more useful measure of how much moisture is in the air, but how does it relate to relative humidity?

The amount of water vapor in the air can dictate what kind of weather we see and how comfortable we are once we step outside. Relative humidity is technically defined as the air’s vapor pressure divided by its equilibrium vapor pressure. Equilibrium vapor pressure means that “there is no net evaporation or condensation,” according to Alistair Fraser, professor emeritus of meteorology at Penn State. At the equilibrium, otherwise known as the saturation point, water molecules are entering and leaving the condensed state at the same rate. When the relative humidity is cited as 50 percent, that means that the air is halfway to its saturation point, and that net evaporation is occurring. Warm air requires more water vapor than cool air to reach its saturation point, which is why an 85°F afternoon can get much muggier than a day that only makes it to 50°F—the latter can still be humid, sure, but it’s not like walking into a sauna.

The dew point is the temperature to which the air needs to cool down to in order to become completely saturated, or reach 100 percent relative humidity. Once the air temperature cools below its dew point, water vapor in the atmosphere will condense. This causes the relative humidity to go up and down like a roller coaster during the day. The relative humidity will go up at night when the air temperature approaches the dew point, and the relative humidity will go down as the air temperature warms farther and farther away from the dew point during the day.

The dew point is a little more abstract than the relative humidity, but it’s an effective way of telling you how much moisture is present in the air because it means the same thing no matter how warm or cold it is outside. A 40°F dew point is comfortable whether the air temperature is 60°F or 100°F. This consistency allows us to index the dew point to comfort levels, giving us a quick understanding of how muggy or pleasant it is outside.

It’s downright dry outside when the dew point is at or below the freezing point. Dew point readings between the freezing mark and about 55°F are pretty comfortable. A dew point between 55°F and 60°F is noticeably humid. It’s muggy when the dew point is above 60°F, and it’s uncomfortable outside when it ticks above 65°F. Any dew point readings above 70°F are oppressive and even dangerous, the kind of stickiness you experience in the tropics or during a brutal summer heat wave. It’s rare for the dew point to reach 80°F, but it can happen in extremely moist areas like corn fields or certain tropical areas.

The dew point and relative humidity are closely related, but the former is much more useful than the latter. Relative humidity helps meteorologists predict conditions favorable for wildfires and fog. Other than that, it’s mostly a relic of the old days that show up in weather reports out of habit. If you want to know the true measure of how comfortable or muggy it is outside, take a look at the dew point.

What is a Polar Vortex?

Edward Stojakovic, Flickr // CC BY 2.0
Edward Stojakovic, Flickr // CC BY 2.0

If you’ve turned on the news or stepped outside lately, you're familiar with the record-breaking cold that is blanketing a lot of North America. According to The Washington Post, a mass of bone-chilling air over Canada—a polar vortex—split into three parts at the beginning of 2019, and one is making its way to the eastern U.S. Polar vortexes can push frigid air straight from the arctic tundra into more temperate regions. But just what is this weather phenomenon?

How does a polar vortex form?

Polar vortexes are basically arctic hurricanes or cyclones. NASA defines them as “a whirling and persistent large area of low pressure, found typically over both North and South poles.” A winter phenomenon, vortexes develop as the sun sets over the pole and temperatures cool, and occur in the middle and upper troposphere and the stratosphere (roughly, between six and 31 miles above the Earth’s surface).

Where will a polar vortex hit?

In the Northern Hemisphere, the vortexes move in a counterclockwise direction. Typically, they dip down over Canada, but according to NBC News, polar vortexes can move into the contiguous U.S. due to warm weather over Greenland or Alaska—which forces denser cold air south—or other weather patterns.

Polar vortexes aren't rare—in fact, arctic winds do sometimes dip down into the eastern U.S.—but sometimes the sheer size of the area affected is much greater than normal.

How cold is a polar vortex?

So cold that frozen sharks have been known to wash up on Cape Cod beaches. So cold that animal keepers at the Calgary Zoo in Alberta, Canada once decided to bring its group of king penguins indoors for warmth (the species lives on islands north of Antarctica and the birds aren't used to extreme cold.) Even parts of Alabama and other regions in the Deep South have seen single-digit temperatures and wind chills below zero.

But thankfully, this type of arctic freeze doesn't stick around forever: Temperatures will gradually warm up.

A Simple Trick for Defrosting Your Windshield in Less Than 60 Seconds


As beautiful as a winter snowfall can be, the white stuff is certainly not without its irritations—especially if you have to get into your car and go somewhere. As if shoveling a path to the driver’s door wasn’t enough, then you’ve got a frozen windshield with which to contend. Everyone has his or her own tricks for warming up a car in record time—including appropriately-named meteorologist Ken Weathers, who works at WATE in Knoxville, Tennessee.

A while back, Weathers shared a homemade trick for defrosting your windshield in less than 60 seconds: spray the glass with a simple solution of one part water and two parts rubbing alcohol. “The reason why this works,” according to Weathers, “is [that] rubbing alcohol has a freezing point of 128 degrees below freezing.”

Watch the spray in action below.

[h/t: Travel + Leisure]