Astronomers Propose New Donut-Shaped Celestial Object

As though there wasn't already enough cool stuff in the cosmos, scientists say space may hold enormous, spinning space donuts made of blistering-hot vaporized rock. They published their report in the Journal of Geophysical Research: Planets.

Planetary scientists Simon Lock and Sarah Stewart were trying to understand what happens when two planets collide. As we know from our own Earth, planets are not simply dead rocks or balls of gas, but active, complex bodies, with constantly shifting temperatures, orbits, shape, rotation, and gravity.

Consequently, planet-on-planet wrecks are less like a smashing of rocks and more like a figure-skating accident, a sudden, midair arresting of whirling triple axels.

The impact of these crashes is so violent, astronomers believe, that the two bodies involved are reduced to hot rubble. Over time, that rubble cools and congeals, eventually spinning and condensing into a new celestial body. It was this kind of smash-up, some scientists say, that created the Earth.

Lock and Stewart aren’t so sure about that. They think our planet’s origins may have been bigger, and substantially more donut-shaped. They hypothesize that the heat and momentum of these collisions can fling hot debris into a big, fat rotating ring they call a synestia.

From there, the process is similar: The vaporized rock cools and begins to stick together, coalescing into a rocky baby planet—and possibly a moon or two.

After centuries of study, we’re still not totally sure how our own Moon was born. Much of its composition is similar to Earth’s, which suggests, Lock and Stewart say, that the cosmic donut could have birthed them both.

The term synestia is their invention, too, a blend of the prefix syn, meaning “together,” and Hestia, the Greek goddess of home, the hearth, and architecture.

A real synestia has yet to be spotted in space, but the scientists are confident that they’ll turn up once we dig deeper into other solar systems.

New Study Reveals 'Hyper-Alarming' Decline of Rainforest Insect Populations

iStock/jmmf
iStock/jmmf

Climate change is decimating yet another vital part of the world's ecosystem, according to a startling new paper. Rainforest insects are dying off at alarming rates, according to a new study spotted by the The Washington Post. In turn, the animals that feed off those insects are decreasing, too.

In the study, published in Proceedings of the National Academy of Sciences, a pair of scientists from the Rensselaer Polytechnic University in New York and the National Autonomous University of Mexico studied populations of rainforest arthropods (an invertebrate classification that includes insects and spiders) in the El Yunque National Forest in Puerto Rico. They compared the number of insects lead author Bradford Lister found on trips in 1976 and 1977 with the number he and co-author Andres Garcia found on trips they took between 2011 and 2013.

Lister and Garcia used nets and sticky traps to collect insects on the ground and several feet above the ground in the forest canopy. They dried these captured bugs and measured the mass of their haul against the mass of insects found in the 1970s, finding that the modern net sweeps captured only an eighth to a fourth of the insects captured in the '70s. The mass of insects captured by sticky traps on the ground declined by 30 to 60 times what they were a few decades ago. They also tracked populations of lizards, frogs, and birds that live off those rainforest insects, finding that those populations had declined significantly, too, at levels not seen in other rainforest animals that don't rely on insects for food.

Tropical insects are particularly vulnerable to climatic changes, since they can't regulate their body temperature. During the time of the study, average maximum temperatures in El Yunque rose by almost 4°F (2°C). The warming climate is "the major driver" of this decline in arthropod populations, the study authors write, triggering a collapse of the forest food chain.

The paper has other scientists worried. "This is one of the most disturbing articles I have ever read," University of Connecticut entomologist David Wagner, who wasn't involved in the research, told The Washington Post, calling the results "hyper-alarming." Other studies of insect populations have found similarly dire results, including significant declines in butterflies, moths, bees, and other species. One recent study found that Germany's flying insect populations had decreased by as much as 75 percent in the last three decades. Scientists don't always attribute those population losses directly to warmer temperatures (habitat loss, pesticide use, droughts, and other factors might play a role), but it’s clear that insect populations are facing grave threats from the modern world.

Not all insect species will be equally affected by climate change, though. While we may see a sharp drop in the populations of tropical insects, scientists project that the number of insects in other regions will rise—leading to a sharp increase in crop-eating pests in some parts of the world and broadening mosquitos' geographical range.

[h/t The Washington Post]

This 'Time-Traveling Illusion' Is Designed to Trick Your Brain

A team of researchers from the California Institute of Technology (Caltech) have designed an illusion that might trick your brain into seeing things that aren’t there, the New Atlas reports.

Dubbed the Illusory Rabbit, it provides instructions that are simple enough to follow. Start playing the YouTube video below and look at the cross in the middle of the screen while also watching for flashes that appear at the bottom of the screen. Most importantly, you’ll want to add up the number of flashes you see throughout the video. (And make sure your volume is up.)

We don’t want to spoil the fun, so before we explain the science of how it works, check out the video and try it for yourself.

Did you see three flashes paired with three beeps? You’re not alone. This is due to a phenomenon called postdiction, which is a little like the opposite of prediction. According to a paper outlining these findings in the journal PLOS ONE, postdiction occurs when the brain processes information retroactively [PDF]. This occurs in such a way that our perception of earlier events is altered by stimuli that come later. In this case, you might think you missed the flash paired with the second of the three beeps, so your mind goes back and tries to make sense of the missing information. That's why you may see an “illusory flash” in the middle of the screen, sandwiched between the two real flashes.

For this reason, the researchers call the mind trick a “time-traveling illusion across multiple senses” (in this case, vision and hearing). It’s successful because the beeps and flashes occur so rapidly—in less than one-fifth of a second. The senses essentially get confused, and the brain tries to fill in the gaps retroactively.

"Illusions are a really interesting window into the brain," the paper’s first author, Noelle Stiles, said in a statement. "By investigating illusions, we can study the brain's decision-making process.” Researchers wanted to find out how the brain “determines reality” when a couple of your senses (in this case, sight and hearing) are bombarded with noisy and conflicting information. When the brain isn’t sure of what’s going on, it essentially makes up information.

“The brain uses assumptions about the environment to solve this problem,” Stiles said. “When these assumptions happen to be wrong, illusions can occur as the brain tries to make the best sense of a confusing situation. We can use these illusions to unveil the underlying inferences that the brain makes."

[h/t New Atlas]

SECTIONS

arrow
LIVE SMARTER