CLOSE
Original image
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Much of What We Thought About Jupiter Is Wrong

Original image
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Scientists have had time to study the data returned from the NASA spacecraft Juno and are discovering that pretty much everything they thought they knew about Jupiter’s interior is wrong. “I think we’re all sort of feeling the humility and humbleness,” said Scott Bolton, the principal investigator of Juno, during a press teleconference today, May 25. “It is making us rethink how giant planets work not only in our system but throughout the galaxy.”

The findings from Juno’s initial Jupiter orbits were published today in the journals Science and Geophysical Research Letters. The latter is a special issue devoted to Juno data and includes more than two dozen reports.

TEXAS-SIZED AMMONIA CYCLONES ARE ONLY THE BEGINNING

Juno, which launched in 2011 and entered Jupiter's orbit on July 4, 2016, is the first spacecraft to give scientists a real view of Jupiter’s poles, and what they’ve found is unlike anything expected.

“Jupiter from the poles doesn’t look anything like it does from the equator,” Bolton said.

Images reveal that Jupiter’s famous bands do not continue to the north and south poles. Rather, the poles are characterized by a bluish hue, chaotic swirls, and ovular features, which are Texas-sized ammonia cyclones. The precise mechanism behind them is unknown. Their stability is equally a mystery. As the Juno mission progresses, repeat visits to the poles and new data on the evolution of the cyclones will answer some of these questions.

The poles aren't identical, either. “The fact that the north and south pole don’t really look like each other is also a puzzle to us,” Bolton said.

One interesting observation was a happy accident. Because of Juno’s unique orbit, the spacecraft always crosses a terminator—that is, the line dividing where the planet is in full illumination of the Sun, and the far side, in total darkness. This is useful because topological relief can be seen at this line. (To see this in action, look through a telescope at a half-full moon. The shadows where light meets dark give a vivid sense of the heights of mountains and the depths of craters.) During an orbit, there happened to be a 4300-mile-wide storm at Jupiter’s terminator near the north pole, and scientists noticed shadows. The storm was towering over its cloud surroundings like a tornado on a Kansas prairie.

INTENSE PRESSURE SQUEEZES HYDROGEN INTO A METALLIC FLUID

Jupiter's core with metallic hydrogen fluid envelope
What may lie within the heart of Jupiter: a possible inner “rock” core surrounded by metallic hydrogen and an outer envelope of molecular hydrogen, all hidden beneath the visible cloud deck.
NASA/JPL-Caltech/SwRI

Bolton explained that the goal of Juno is "looking inside Jupiter pretty much every way we know how.” Juno carries an instrument called a microwave radiometer, designed to see through Jupiter’s clouds and to collect data on the dynamics and composition of its deep atmosphere. (The instrument is sensitive to water and ammonia but is presently looking only at ammonia.) So far, the data are mystifying and wholly unexpected. Most scientists previously believed that just below the clouds, Jupiter’s atmosphere is well mixed. Juno has found just the opposite: that levels of ammonia vary greatly, and that the structure of the atmosphere does not match the visible zones and belts. Ammonia is emanating from great depths of the planet and driving weather systems.

Scientists still don’t know whether Jupiter has a core, or what it’s composed of if it exists. For insight, they’re studying the planet’s magnetosphere. Deep inside the gas giant, the pressure is so great that the element hydrogen has been squeezed into a metallic fluid. (Atmospheric pressure is measured in bars. Pressure at the surface of the Earth is one bar. On Jupiter, it’s 2 million. And at the core it would be around 40 million bars.) The movement of this liquid metallic hydrogen is thought by scientists to create the planet’s magnetic field. By studying the field, Juno can unlock the mysteries of the core’s depth, size, density, and even whether it exists, as predicted, as a solid rocky core. “We were originally looking for a compact core or no core,” Bolton said, “but we’re finding that it’s fuzzy—perhaps partially dissolved.”

Jupiter’s magnetosphere is the second-largest structure in the solar system, behind only the heliosphere itself. (The heliosphere is the total area influenced by the Sun. Beyond it is interstellar space.) So far, scientists are dumbfounded by the strength of the magnetic field close to the cloud tops—and by its deviations. “What we’ve found is that the magnetic field is both stronger than where we expected it to be strong, and weaker where we expected it to be weak,” said Jack Connerney, the deputy principal investigator of Juno.

Another paper today in Science revealed new findings about Jupiter’s auroras. The Earth’s auroras are Sun-driven, the result of the interaction of the solar winds and Earth’s magnetosphere. Jupiter’s auroras have been known for a while to be different, and related to the planet’s rotation. Juno has taken measurements of the magnetic field and charged particles causing the auroras, and has also taken the first images of the southern aurora. The processes at work are still unknown, but the takeaway is that the mechanics behind Jupiter’s auroras are unlike those of Earth, and call into question how Jupiter interacts with its environment in space.

JUNO ALREADY HAS US REWRITING THE TEXTBOOKS

An enhanced-color closeup of swirling waves of clouds, some just 4 miles across. Some of the small, bright high clouds seem to form squall lines, or a narrow band of high winds and storms associated with a cold front. They're likely composed of water and/or ammonia ice.
NASA/SWRI/MSSS/Gerald Eichstädt/Seán Doran

Understanding Jupiter is essential to understanding not only how our solar system formed, but how the new systems being discovered around stars form and operate as well. The next close approach of Jupiter will take place on July 11, when Juno flies directly over the famed Great Red Spot. Scientists hope to learn more about its depth, action, and drivers.

Juno already has us rewriting the textbooks, and it's only at the beginning of its orbital mission. It's slated to perform 33 polar orbits of Jupiter, each lasting 53.5 days. So far, it's completed only five. The spacecraft’s prime mission will end next year, at which time NASA will have to decide whether it can afford to extend the mission or to send Juno into the heart of Jupiter, where it will be obliterated. This self-destruct plunge would protect that region of space from debris and local, potentially habitable moons from contamination.

Bolton tells Mental Floss that the surprising findings really bring home the fact that to unlock Jupiter, this mission will need to be seen through to completion. “That’s what exciting about exploration: We’re going to a place we’ve never been before and making new discoveries … we’re just scratching the surface.” he says. “Juno is the right tool to do this. We have the right instruments. We have the right orbit. We’re going to win over this beast and learn how it works.”

Original image
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
Hulton Archive/Getty
arrow
science
9 Facts about Physicist Michael Faraday, the 'Father of Electricity'
Original image
Hulton Archive/Getty

A self-taught scientist, Michael Faraday (1791-1867) excelled in chemistry and physics to become one of the most influential thinkers in history. He’s been called the "father of electricity," (Nikola Tesla and Thomas Edison also wear that crown) and his appetite for experimenting knew no bounds. "Nothing is too wonderful to be true, if it be consistent with the laws of nature; and in such things as these, experiment is the best test of such consistency," he wrote. Faraday discovered laws of electromagnetism, invented the first electric motor, and built the first electric generator—paving the way for our mechanized age. Read on for more Faraday facts.

1. HE NEVER HAD A FORMAL SCIENTIFIC EDUCATION.

Born in south London in a working-class family, Faraday earned a rudimentary education in reading, writing, and math. When he turned 14 he was apprenticed to a London bookbinder for the following seven years. In his free time, Faraday read Jane Marcet's Conversations in Chemistry, an 1806 bestseller that explained scientific topics for a general audience.

2. HE WAS A SELF-STARTER.

Like Marcet, Faraday was fascinated by the work of Sir Humphry Davy, a charismatic chemist who had found fame by testing the effects of nitrous oxide on himself. (He let others, including poet Samuel Taylor Coleridge, inhale the gas on the condition that they keep diaries of their thoughts and sensations while high.) In spring 1812, a customer at the bookbindery gave Faraday tickets to see Davy’s upcoming lectures. Faraday compiled his notes from the lectures in a bound volume (the one benefit of his toil at the bookbinder's) and sent the book to Davy, requesting to become his assistant—an unheard-of notion for a tradesman with no university degree. Sensing his intelligence and drive, Davy secured him a job at the Royal Institution, where Davy ran the chemistry lab.

3. HE INVENTED A MOTOR WITH MAGNETS AND MERCURY.

By 1820, other scientists had shown that an electric current produces a magnetic field, and that two electrified wires produce a force on each other. Faraday thought there could be a way to harness these forces in a mechanical apparatus. In 1822, he built a device using a magnet, liquid mercury (which conducts electricity) and a current-carrying wire that turned electrical energy into mechanical energy—in other words, the first electric motor. Faraday noted the success in his journal [PDF]: "Very satisfactory, but make more sensible apparatus."

4. HE ALSO CREATED THE FIRST ELECTRIC GENERATOR.

A decade after his breakthrough with the motor, Faraday discovered that the movement of a wire through a stationary magnetic field can induce an electrical current in the wire—the principle of electromagnetic induction. To demonstrate it, Faraday built a machine in which a copper disc rotated between the two poles of a horseshoe magnet, producing its own power. The machine, later called the Faraday disc, became the first electric generator.

5. HE SHOWED THE PULL OF MAGNETIC FORCE.

In a brilliantly simple experiment (recreated by countless schoolchildren today), Faraday laid a bar magnet on a table and covered it with a piece of stiff paper. Then he sprinkled magnetized iron shavings across the paper, which immediately arranged themselves into semicircular arcs emanating from the ends—the north and south poles—of the magnet. In addition to revealing that magnets still exert pull through barriers, he visualized the pattern of magnetic force in space.

6. YOU CAN VISIT HIS MAGNETIC LABORATORY IN LONDON.

Faraday served in a number of scientific roles at the Royal Institution, an organization dedicated to promoting applied science. Eventually Faraday was appointed as its Fullerian Professor of Chemistry, a permanent position that allowed him to research and experiment to his heart's content. His magnetic laboratory from the 1850s is now faithfully replicated in the Royal Institution's Faraday Museum. It displays many of his world-changing gadgets, including an original Faraday disc, one of his early electrostatic generators, his chemical samples, and a giant magnet.

7. HE POPULARIZED NEW SCIENTIFIC TERMINOLOGY.

Faraday's work was so groundbreaking that no descriptors existed for many of his discoveries. With his fellow scientist William Whewell, Faraday coined a number of futuristic-sounding names for the forces and concepts he identified, such as electrode, anode, cathode, and ion. (Whewell himself coined the word "scientist" in 1834, after "natural philosopher" had become too vague to describe people working in increasingly specialized fields.)

8. PRINCE ALBERT GAVE HIM SOME SWEET REAL ESTATE.

In 1848, the Prince Consort, also known as Queen Victoria's husband Prince Albert, gave Faraday and his family a comfortable home at Hampton Court—not the royal palace, but near it—free of charge, to recognize his contributions to science. The house at 37 Hampton Court Road was renamed Faraday House until he died there on August 25, 1867. Now it's known simply by its street address.

9. HE WAS FEATURED ON THE UNITED KINGDOM'S £20 NOTE.

To honor Faraday's role in the advancement of British science, the Bank of England unveiled a £20 bill with his portrait on June 5, 1991. He joined an illustrious group of Britons with their own notes, including William Shakespeare, Florence Nightingale, and Isaac Newton. By the time it was withdrawn in February 2001, the bank estimated that about 120 million Faraday bills were in circulation (that's more than 2 billion quid).

Original image
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
Richard Bouhet // Getty
arrow
science
4 Expert Tips on How to Get the Most Out of August's Total Solar Eclipse
Original image
Richard Bouhet // Getty

As you might have heard, there’s a total solar eclipse crossing the U.S. on August 21. It’s the first total solar eclipse in the country since 1979, and the first coast-to-coast event since June 8, 1918, when eclipse coverage pushed World War I off the front page of national newspapers. Americans are just as excited today: Thousands are hitting the road to stake out prime spots for watching the last cross-country total solar eclipse until 2045. We’ve asked experts for tips on getting the most out of this celestial spectacle.

1. DON’T FRY YOUR EYES—OR BREAK THE BANK

To see the partial phases of the eclipse, you will need eclipse glasses because—surprise!—staring directly at the sun for even a minute or two will permanently damage your retinas. Make sure the glasses you buy meet the ISO 12312-2 safety standards. As eclipse frenzy nears its peak, shady retailers are selling knock-off glasses that will not adequately protect your eyes. The American Astronomical Society keeps a list of reputable vendors, but as a rule, if you can see anything other than the sun through your glasses, they might be bogus. There’s no need to splurge, however: You can order safe paper specs in bulk for as little as 90 cents each. In a pinch, you and your friends can take turns watching the partial phases through a shared pair of glasses. As eclipse chaser and author Kate Russo points out, “you only need to view occasionally—no need to sit and stare with them on the whole time.”

2. DON’T DIY YOUR EYE PROTECTION

There are plenty of urban legends about “alternative” ways to protect your eyes while watching a solar eclipse: smoked glass, CDs, several pairs of sunglasses stacked on top of each other. None works. If you’re feeling crafty, or don’t have a pair of safe eclipse glasses, you can use a pinhole projector to indirectly watch the eclipse. NASA produced a how-to video to walk you through it.

3. GET TO THE PATH OF TOTALITY

Bryan Brewer, who published a guidebook for solar eclipses, tells Mental Floss the difference between seeing a partial solar eclipse and a total solar eclipse is “like the difference between standing right outside the arena and being inside watching the game.”

During totality, observers can take off their glasses and look up at the blocked-out sun—and around at their eerily twilit surroundings. Kate Russo’s advice: Don’t just stare at the sun. “You need to make sure you look above you, and around you as well so you can notice the changes that are happening,” she says. For a brief moment, stars will appear next to the sun and animals will begin their nighttime routines. Once you’ve taken in the scenery, you can use a telescope or a pair of binoculars to get a close look at the tendrils of flame that make up the sun’s corona.

Only a 70-mile-wide band of the country stretching from Oregon to South Carolina will experience the total eclipse. Rooms in the path of totality are reportedly going for as much as $1000 a night, and news outlets across the country have raised the specter of traffic armageddon. But if you can find a ride and a room, you'll be in good shape for witnessing the spectacle.

4. PRESERVE YOUR NIGHT VISION

Your eyes need half an hour to fully adjust to darkness, but the total eclipse will last less than three minutes. If you’ve just been staring at the sun through the partial phases of the eclipse, your view of the corona during totality will be obscured by lousy night vision and annoying green afterimages. Eclipse chaser James McClean—who has trekked from Svalbard to Java to watch the moon blot out the sun—made this rookie mistake during one of his early eclipse sightings in Egypt in 2006. After watching the partial phases, with stray beams of sunlight reflecting into his eyes from the glittering sand and sea, McClean was snowblind throughout the totality.

Now he swears by a new method: blindfolding himself throughout the first phases of the eclipse to maximize his experience of the totality. He says he doesn’t mind “skipping the previews if it means getting a better view of the film.” Afterward, he pops on some eye protection to see the partial phases of the eclipse as the moon pulls away from the sun. If you do blindfold yourself, just remember to set an alarm for the time when the total eclipse begins so you don’t miss its cross-country journey. You'll have to wait 28 years for your next chance.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios