Much of What We Thought About Jupiter Is Wrong

This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Scientists have had time to study the data returned from the NASA spacecraft Juno and are discovering that pretty much everything they thought they knew about Jupiter’s interior is wrong. “I think we’re all sort of feeling the humility and humbleness,” said Scott Bolton, the principal investigator of Juno, during a press teleconference today, May 25. “It is making us rethink how giant planets work not only in our system but throughout the galaxy.”

The findings from Juno’s initial Jupiter orbits were published today in the journals Science and Geophysical Research Letters. The latter is a special issue devoted to Juno data and includes more than two dozen reports.

TEXAS-SIZED AMMONIA CYCLONES ARE ONLY THE BEGINNING

Juno, which launched in 2011 and entered Jupiter's orbit on July 4, 2016, is the first spacecraft to give scientists a real view of Jupiter’s poles, and what they’ve found is unlike anything expected.

“Jupiter from the poles doesn’t look anything like it does from the equator,” Bolton said.

Images reveal that Jupiter’s famous bands do not continue to the north and south poles. Rather, the poles are characterized by a bluish hue, chaotic swirls, and ovular features, which are Texas-sized ammonia cyclones. The precise mechanism behind them is unknown. Their stability is equally a mystery. As the Juno mission progresses, repeat visits to the poles and new data on the evolution of the cyclones will answer some of these questions.

The poles aren't identical, either. “The fact that the north and south pole don’t really look like each other is also a puzzle to us,” Bolton said.

One interesting observation was a happy accident. Because of Juno’s unique orbit, the spacecraft always crosses a terminator—that is, the line dividing where the planet is in full illumination of the Sun, and the far side, in total darkness. This is useful because topological relief can be seen at this line. (To see this in action, look through a telescope at a half-full moon. The shadows where light meets dark give a vivid sense of the heights of mountains and the depths of craters.) During an orbit, there happened to be a 4300-mile-wide storm at Jupiter’s terminator near the north pole, and scientists noticed shadows. The storm was towering over its cloud surroundings like a tornado on a Kansas prairie.

INTENSE PRESSURE SQUEEZES HYDROGEN INTO A METALLIC FLUID

Jupiter's core with metallic hydrogen fluid envelope
What may lie within the heart of Jupiter: a possible inner “rock” core surrounded by metallic hydrogen and an outer envelope of molecular hydrogen, all hidden beneath the visible cloud deck.
NASA/JPL-Caltech/SwRI

Bolton explained that the goal of Juno is "looking inside Jupiter pretty much every way we know how.” Juno carries an instrument called a microwave radiometer, designed to see through Jupiter’s clouds and to collect data on the dynamics and composition of its deep atmosphere. (The instrument is sensitive to water and ammonia but is presently looking only at ammonia.) So far, the data are mystifying and wholly unexpected. Most scientists previously believed that just below the clouds, Jupiter’s atmosphere is well mixed. Juno has found just the opposite: that levels of ammonia vary greatly, and that the structure of the atmosphere does not match the visible zones and belts. Ammonia is emanating from great depths of the planet and driving weather systems.

Scientists still don’t know whether Jupiter has a core, or what it’s composed of if it exists. For insight, they’re studying the planet’s magnetosphere. Deep inside the gas giant, the pressure is so great that the element hydrogen has been squeezed into a metallic fluid. (Atmospheric pressure is measured in bars. Pressure at the surface of the Earth is one bar. On Jupiter, it’s 2 million. And at the core it would be around 40 million bars.) The movement of this liquid metallic hydrogen is thought by scientists to create the planet’s magnetic field. By studying the field, Juno can unlock the mysteries of the core’s depth, size, density, and even whether it exists, as predicted, as a solid rocky core. “We were originally looking for a compact core or no core,” Bolton said, “but we’re finding that it’s fuzzy—perhaps partially dissolved.”

Jupiter’s magnetosphere is the second-largest structure in the solar system, behind only the heliosphere itself. (The heliosphere is the total area influenced by the Sun. Beyond it is interstellar space.) So far, scientists are dumbfounded by the strength of the magnetic field close to the cloud tops—and by its deviations. “What we’ve found is that the magnetic field is both stronger than where we expected it to be strong, and weaker where we expected it to be weak,” said Jack Connerney, the deputy principal investigator of Juno.

Another paper today in Science revealed new findings about Jupiter’s auroras. The Earth’s auroras are Sun-driven, the result of the interaction of the solar winds and Earth’s magnetosphere. Jupiter’s auroras have been known for a while to be different, and related to the planet’s rotation. Juno has taken measurements of the magnetic field and charged particles causing the auroras, and has also taken the first images of the southern aurora. The processes at work are still unknown, but the takeaway is that the mechanics behind Jupiter’s auroras are unlike those of Earth, and call into question how Jupiter interacts with its environment in space.

JUNO ALREADY HAS US REWRITING THE TEXTBOOKS


An enhanced-color closeup of swirling waves of clouds, some just 4 miles across. Some of the small, bright high clouds seem to form squall lines, or a narrow band of high winds and storms associated with a cold front. They're likely composed of water and/or ammonia ice.
NASA/SWRI/MSSS/Gerald Eichstädt/Seán Doran

Understanding Jupiter is essential to understanding not only how our solar system formed, but how the new systems being discovered around stars form and operate as well. The next close approach of Jupiter will take place on July 11, when Juno flies directly over the famed Great Red Spot. Scientists hope to learn more about its depth, action, and drivers.

Juno already has us rewriting the textbooks, and it's only at the beginning of its orbital mission. It's slated to perform 33 polar orbits of Jupiter, each lasting 53.5 days. So far, it's completed only five. The spacecraft’s prime mission will end next year, at which time NASA will have to decide whether it can afford to extend the mission or to send Juno into the heart of Jupiter, where it will be obliterated. This self-destruct plunge would protect that region of space from debris and local, potentially habitable moons from contamination.

Bolton tells Mental Floss that the surprising findings really bring home the fact that to unlock Jupiter, this mission will need to be seen through to completion. “That’s what exciting about exploration: We’re going to a place we’ve never been before and making new discoveries … we’re just scratching the surface.” he says. “Juno is the right tool to do this. We have the right instruments. We have the right orbit. We’re going to win over this beast and learn how it works.”

How to Relieve a Tension Headache in 10 Seconds, According to a Physical Therapist

iStock.com/SIphotography
iStock.com/SIphotography

The source of a pounding headache isn't always straightforward. Sometimes over-the-counter painkillers have no effect, and in other cases all you need is a glass of water to ease the pain. When it comes to a specific type of a headache, Prevention recommends a treatment that takes about 10 seconds—no fancy medications or equipment required.

If you're experiencing pain throughout your head and neck, you may have a tension headache. This type of headache can happen when you tense the muscles in your jaw—something many people do when stressed. This tightening triggers a chain reaction where the surrounding muscles in the head and neck become tense, which results in a painful, stiff feeling.

Fortunately, there's a way to treat tension headaches that's even easier than popping an Advil. David Reavy, a physical therapist known for his work with NFL and NBA athletes, recently suggested a solution to Prevention writer Christine Mattheis called the masseter release. To practice it yourself, look for the masseter muscle—the thick tissue that connects your jawbone to your cheekbone on either side of your face—with your fingers. Once you've found them, press the spots gently, open your mouth as wide as you can, close it, and repeat until you feel the muscle relax. Doing this a few times a day helps combat whatever tension is caused by clenching your jaw.

If that doesn't work, it's possible that the masseter muscle isn't the source of your headache after all. In that case, read up on the differences among popular pain killers to determine which one is the best match for your pain.

[h/t Prevention]

Why Do Hangovers Get Worse As You Get Older?

iStock/OcusFocus
iStock/OcusFocus

“I just can’t drink like I used to” is a common refrain among people pushing 30 and beyond. This is roughly the age when it starts getting harder to bounce back from a night of partying, and unfortunately, it keeps getting harder from there on out.

Even if you were the keg flip king or queen in college, consuming the same amount of beer at 29 that you consumed at 21 will likely have you guzzling Gatorade in bed the next day. It’s true that hangovers tend to worsen with age, and it’s not just because you have a lower alcohol tolerance from going out less. Age affects your body in various ways, and the way you process alcohol is one of them.

Because your body interprets alcohol as poison, your liver steps in to convert it into different chemicals that are easier to break down and eliminate from your body. As you get older, though, your liver produces less of the enzymes and antioxidants that help metabolize alcohol, according to a study from South Korea. One of these enzymes—called alcohol dehydrogenase (ADH)— has been called the “primary defense” against alcohol. It kicks off the multi-step process of alcohol metabolization by turning the beer or booze—or whatever you imbibed—into a chemical compound called acetaldehyde. Ironically, this substance is even more toxic than your tipple of choice, and a build-up of acetaldehyde can cause nausea, palpitations, and face flushing. It usually isn’t left in this state for long, though.

Another enzyme called aldehyde dehydrogenase (ALDH) helps convert the bad toxin into a new substance called acetate, which is a little like vinegar. Lastly, it’s converted into carbon dioxide or water and expelled from your body. You’ve probably heard the one-drink-per-hour recommendation, which is roughly how long it takes for your liver to complete this whole process.

So what does this mean for occasional drinkers whose mid-20s have come and gone? To summarize: As your liver enzymes diminish with age, your body becomes less efficient at metabolizing alcohol. The alcohol lingers longer in your body, leading to prolonged hangover symptoms like headaches and nausea.

This phenomenon can also partly be explained by the fact that our bodies tend to lose muscle and water over time. People with more body fat don’t break down alcohol as well, and less water in your body means that the booze stays concentrated in your system longer, The Cut reports. This is one of the reasons why women, who tend to have a higher body fat percentage than men, often suffer worse hangovers than their male counterparts. (Additionally, women have fewer ADH enzymes.)

More depressingly, as you get older, your immune system deteriorates through a process called immunosenescence. This means that recovering from anything—hangovers included—is more challenging with age. "When we get older, our whole recovery process for everything we do is harder, longer, and slower," gastroenterologist Mark Welton told Men’s Health.

This may seem like a buzzkill, but we're not telling you to put down the pint. However, if you're going to drink, just be aware of your body’s limitations. Shots of cotton candy-flavored vodka were a bad idea in college, and they’re an especially bad idea now. Trust us.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER