Much of What We Thought About Jupiter Is Wrong

This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Scientists have had time to study the data returned from the NASA spacecraft Juno and are discovering that pretty much everything they thought they knew about Jupiter’s interior is wrong. “I think we’re all sort of feeling the humility and humbleness,” said Scott Bolton, the principal investigator of Juno, during a press teleconference today, May 25. “It is making us rethink how giant planets work not only in our system but throughout the galaxy.”

The findings from Juno’s initial Jupiter orbits were published today in the journals Science and Geophysical Research Letters. The latter is a special issue devoted to Juno data and includes more than two dozen reports.

TEXAS-SIZED AMMONIA CYCLONES ARE ONLY THE BEGINNING

Juno, which launched in 2011 and entered Jupiter's orbit on July 4, 2016, is the first spacecraft to give scientists a real view of Jupiter’s poles, and what they’ve found is unlike anything expected.

“Jupiter from the poles doesn’t look anything like it does from the equator,” Bolton said.

Images reveal that Jupiter’s famous bands do not continue to the north and south poles. Rather, the poles are characterized by a bluish hue, chaotic swirls, and ovular features, which are Texas-sized ammonia cyclones. The precise mechanism behind them is unknown. Their stability is equally a mystery. As the Juno mission progresses, repeat visits to the poles and new data on the evolution of the cyclones will answer some of these questions.

The poles aren't identical, either. “The fact that the north and south pole don’t really look like each other is also a puzzle to us,” Bolton said.

One interesting observation was a happy accident. Because of Juno’s unique orbit, the spacecraft always crosses a terminator—that is, the line dividing where the planet is in full illumination of the Sun, and the far side, in total darkness. This is useful because topological relief can be seen at this line. (To see this in action, look through a telescope at a half-full moon. The shadows where light meets dark give a vivid sense of the heights of mountains and the depths of craters.) During an orbit, there happened to be a 4300-mile-wide storm at Jupiter’s terminator near the north pole, and scientists noticed shadows. The storm was towering over its cloud surroundings like a tornado on a Kansas prairie.

INTENSE PRESSURE SQUEEZES HYDROGEN INTO A METALLIC FLUID

Jupiter's core with metallic hydrogen fluid envelope
What may lie within the heart of Jupiter: a possible inner “rock” core surrounded by metallic hydrogen and an outer envelope of molecular hydrogen, all hidden beneath the visible cloud deck.
NASA/JPL-Caltech/SwRI

Bolton explained that the goal of Juno is "looking inside Jupiter pretty much every way we know how.” Juno carries an instrument called a microwave radiometer, designed to see through Jupiter’s clouds and to collect data on the dynamics and composition of its deep atmosphere. (The instrument is sensitive to water and ammonia but is presently looking only at ammonia.) So far, the data are mystifying and wholly unexpected. Most scientists previously believed that just below the clouds, Jupiter’s atmosphere is well mixed. Juno has found just the opposite: that levels of ammonia vary greatly, and that the structure of the atmosphere does not match the visible zones and belts. Ammonia is emanating from great depths of the planet and driving weather systems.

Scientists still don’t know whether Jupiter has a core, or what it’s composed of if it exists. For insight, they’re studying the planet’s magnetosphere. Deep inside the gas giant, the pressure is so great that the element hydrogen has been squeezed into a metallic fluid. (Atmospheric pressure is measured in bars. Pressure at the surface of the Earth is one bar. On Jupiter, it’s 2 million. And at the core it would be around 40 million bars.) The movement of this liquid metallic hydrogen is thought by scientists to create the planet’s magnetic field. By studying the field, Juno can unlock the mysteries of the core’s depth, size, density, and even whether it exists, as predicted, as a solid rocky core. “We were originally looking for a compact core or no core,” Bolton said, “but we’re finding that it’s fuzzy—perhaps partially dissolved.”

Jupiter’s magnetosphere is the second-largest structure in the solar system, behind only the heliosphere itself. (The heliosphere is the total area influenced by the Sun. Beyond it is interstellar space.) So far, scientists are dumbfounded by the strength of the magnetic field close to the cloud tops—and by its deviations. “What we’ve found is that the magnetic field is both stronger than where we expected it to be strong, and weaker where we expected it to be weak,” said Jack Connerney, the deputy principal investigator of Juno.

Another paper today in Science revealed new findings about Jupiter’s auroras. The Earth’s auroras are Sun-driven, the result of the interaction of the solar winds and Earth’s magnetosphere. Jupiter’s auroras have been known for a while to be different, and related to the planet’s rotation. Juno has taken measurements of the magnetic field and charged particles causing the auroras, and has also taken the first images of the southern aurora. The processes at work are still unknown, but the takeaway is that the mechanics behind Jupiter’s auroras are unlike those of Earth, and call into question how Jupiter interacts with its environment in space.

JUNO ALREADY HAS US REWRITING THE TEXTBOOKS


An enhanced-color closeup of swirling waves of clouds, some just 4 miles across. Some of the small, bright high clouds seem to form squall lines, or a narrow band of high winds and storms associated with a cold front. They're likely composed of water and/or ammonia ice.
NASA/SWRI/MSSS/Gerald Eichstädt/Seán Doran

Understanding Jupiter is essential to understanding not only how our solar system formed, but how the new systems being discovered around stars form and operate as well. The next close approach of Jupiter will take place on July 11, when Juno flies directly over the famed Great Red Spot. Scientists hope to learn more about its depth, action, and drivers.

Juno already has us rewriting the textbooks, and it's only at the beginning of its orbital mission. It's slated to perform 33 polar orbits of Jupiter, each lasting 53.5 days. So far, it's completed only five. The spacecraft’s prime mission will end next year, at which time NASA will have to decide whether it can afford to extend the mission or to send Juno into the heart of Jupiter, where it will be obliterated. This self-destruct plunge would protect that region of space from debris and local, potentially habitable moons from contamination.

Bolton tells Mental Floss that the surprising findings really bring home the fact that to unlock Jupiter, this mission will need to be seen through to completion. “That’s what exciting about exploration: We’re going to a place we’ve never been before and making new discoveries … we’re just scratching the surface.” he says. “Juno is the right tool to do this. We have the right instruments. We have the right orbit. We’re going to win over this beast and learn how it works.”

Divers Swim With What Could Be the Biggest Great White Shark Ever Filmed

iStock.com/RamonCarretero
iStock.com/RamonCarretero

New pictures and video taken by divers show what could possibly be the largest great white shark ever caught on camera, CNN Travel reports.

Deep Blue, a 50-plus-year-old great white first documented 20 years ago, was spotted off the coast of Hawaii recently in a rare close encounter. Divers were filming tiger sharks feeding on a sperm whale carcass south of Oahu when Deep Blue swam up and began scratching herself on their boat. They accompanied the shark in the water for the rest of the day, even getting close enough to touch her at times.


View this post on Instagram

A post shared by Ocean Ramsey #OceanRamsey (@oceanramsey) on

"She swam away escorted by two rough-toothed dolphins who danced around her over to one of my [...] shark research vessels and proceeded to use it as a scratching post, passing up feeding for another need," Ocean Ramsey, one of the divers, wrote in an Instagram post.


View this post on Instagram

A post shared by Ocean Ramsey #OceanRamsey (@oceanramsey) on

Deep Blue is roughly 20 feet long and weighs an estimated 2 tons—likely making her one of the largest great whites alive. (The record for biggest great white shark ever is often disputed, with some outlets listing an alleged 37-foot shark recorded in the 1930s as the record-holder.)

Deep Blue looks especially wide in these photos, leading some to suspect she's pregnant. Swimming so close to great whites is always dangerous, especially when they're feeding, but older, pregnant females tend to be more docile.

Though great white sharks are the largest predatory sharks in the ocean, sharks of Deep Blue's size are seldom seen, and they're filmed alive even less often, making this a remarkable occurrence.

[h/t CNN Travel]

The Psychology Behind Kids' L.O.L. Surprise! Doll Obsession

Jack Taylor, Getty Images
Jack Taylor, Getty Images

Isaac Larian, the founder and CEO of toymaker MGA Entertainment, is an insomniac. Fortunately for him, that inability to sleep forced him to get up out of bed one night—a move that ended up being worth $4 billion.

Larian’s company is the architect of L.O.L. Surprise!, a line of dolls with a clever conceit. The product, which retails for about $10 to $20, is encased in a ball-shaped plastic shell and buried under layers of packaging, forcing children to tear through a gauntlet of wrapping before they’re able to see it. The inspiration came on that highly profitable sleepless night, which Larian spent watching unboxing videos on YouTube. It resulted in the first toy made for a generation wired for delayed gratification.

The dolls first went on sale in test markets at select Target stores in late 2016. MGA shipped out 500,000 of them, all of which sold out within two months. A Cabbage Patch Kid-esque frenzy came the following year. By late 2018, L.O.L. Surprise! (the acronym stands for the fancifully redundant Little Outrageous Little) had moved 800 million units, accounted for seven of the top 10 toys sold in the U.S., and was named Toy of the Year by the Toy Association. Videos of kids and adults unboxing them garner millions of views on YouTube, which is precisely where Larian knew his marketing would be most effective.

A woman holds a L.O.L. Surprise doll and packaging in her hand
Cindy Ord, Getty Images for MGA Entertainment

The dolls themselves are nothing revolutionary. Once freed from their plastic prisons, they stare at their owner with doe-eyed expressions. Some “tinkle,” while others change color in water. They can be dressed in accessories found in the balls or paired with tiny pets (which also must be "unboxed"). Larger bundles, like last year’s $89.99 L.O.L. Bigger Surprise! capsule, feature a plethora of items, each individually wrapped. It took a writer from The New York Times 59 minutes to uncover everything inside.

This methodical excavation is what makes L.O.L. Surprise! so appealing to its pint-sized target audience. Though MGA was advised that kids wouldn’t want to buy something they couldn’t see, Larian and his executives had an instinctual understanding of what child development experts already knew: Kids like looking forward to things.

Dr. Rachel Barr, director of Georgetown University’s Early Learning Project, told The Atlantic that unboxing videos tickle the part of a child’s brain that enjoys anticipation. By age 4 or 5, they have a concept of “the future,” or events that will unfold somewhere other than the present. However, Barr said, they’re also wary of being scared by an unforeseen outcome. In an unboxing video, they know the payoff will be positive and not, say, a live tarantula.

L.O.L. Surprise! is engineered to prolong that anticipatory joy, with kids peeling away wrapping like an onion for up to 20 minutes at a time. The effect is not entirely novel—baseball card collectors have been buying and unwrapping card packs without knowing exactly what’s inside for decades—but paired with social media, MGA was able to strike oil. The dolls now have 350 licensees making everything from bed sheets to apparel. Collectors—or their parents—can buy a $199.99 doll house. So-called “boy toys” are now lurking inside the wrappers, with one, the mohawk-sporting Punk Boi, causing a mild stir for being what MGA calls “anatomically correct.” His tiny plastic genital area facilitates a peeing function.

Whether L.O.L. Surprise! bucks conventional toy trends and continues its popularity beyond a handful of holiday seasons remains to be seen. Already, MGA is pushing alternative products like Poopsie Slime Surprise, a unicorn that can be fed glitter and poops a viscous green slime. An official unboxing video has been viewed 4.2 million times and counting.

SECTIONS

arrow
LIVE SMARTER