CLOSE
Original image
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Much of What We Thought About Jupiter Is Wrong

Original image
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Scientists have had time to study the data returned from the NASA spacecraft Juno and are discovering that pretty much everything they thought they knew about Jupiter’s interior is wrong. “I think we’re all sort of feeling the humility and humbleness,” said Scott Bolton, the principal investigator of Juno, during a press teleconference today, May 25. “It is making us rethink how giant planets work not only in our system but throughout the galaxy.”

The findings from Juno’s initial Jupiter orbits were published today in the journals Science and Geophysical Research Letters. The latter is a special issue devoted to Juno data and includes more than two dozen reports.

TEXAS-SIZED AMMONIA CYCLONES ARE ONLY THE BEGINNING

Juno, which launched in 2011 and entered Jupiter's orbit on July 4, 2016, is the first spacecraft to give scientists a real view of Jupiter’s poles, and what they’ve found is unlike anything expected.

“Jupiter from the poles doesn’t look anything like it does from the equator,” Bolton said.

Images reveal that Jupiter’s famous bands do not continue to the north and south poles. Rather, the poles are characterized by a bluish hue, chaotic swirls, and ovular features, which are Texas-sized ammonia cyclones. The precise mechanism behind them is unknown. Their stability is equally a mystery. As the Juno mission progresses, repeat visits to the poles and new data on the evolution of the cyclones will answer some of these questions.

The poles aren't identical, either. “The fact that the north and south pole don’t really look like each other is also a puzzle to us,” Bolton said.

One interesting observation was a happy accident. Because of Juno’s unique orbit, the spacecraft always crosses a terminator—that is, the line dividing where the planet is in full illumination of the Sun, and the far side, in total darkness. This is useful because topological relief can be seen at this line. (To see this in action, look through a telescope at a half-full moon. The shadows where light meets dark give a vivid sense of the heights of mountains and the depths of craters.) During an orbit, there happened to be a 4300-mile-wide storm at Jupiter’s terminator near the north pole, and scientists noticed shadows. The storm was towering over its cloud surroundings like a tornado on a Kansas prairie.

INTENSE PRESSURE SQUEEZES HYDROGEN INTO A METALLIC FLUID

Jupiter's core with metallic hydrogen fluid envelope
What may lie within the heart of Jupiter: a possible inner “rock” core surrounded by metallic hydrogen and an outer envelope of molecular hydrogen, all hidden beneath the visible cloud deck.
NASA/JPL-Caltech/SwRI

Bolton explained that the goal of Juno is "looking inside Jupiter pretty much every way we know how.” Juno carries an instrument called a microwave radiometer, designed to see through Jupiter’s clouds and to collect data on the dynamics and composition of its deep atmosphere. (The instrument is sensitive to water and ammonia but is presently looking only at ammonia.) So far, the data are mystifying and wholly unexpected. Most scientists previously believed that just below the clouds, Jupiter’s atmosphere is well mixed. Juno has found just the opposite: that levels of ammonia vary greatly, and that the structure of the atmosphere does not match the visible zones and belts. Ammonia is emanating from great depths of the planet and driving weather systems.

Scientists still don’t know whether Jupiter has a core, or what it’s composed of if it exists. For insight, they’re studying the planet’s magnetosphere. Deep inside the gas giant, the pressure is so great that the element hydrogen has been squeezed into a metallic fluid. (Atmospheric pressure is measured in bars. Pressure at the surface of the Earth is one bar. On Jupiter, it’s 2 million. And at the core it would be around 40 million bars.) The movement of this liquid metallic hydrogen is thought by scientists to create the planet’s magnetic field. By studying the field, Juno can unlock the mysteries of the core’s depth, size, density, and even whether it exists, as predicted, as a solid rocky core. “We were originally looking for a compact core or no core,” Bolton said, “but we’re finding that it’s fuzzy—perhaps partially dissolved.”

Jupiter’s magnetosphere is the second-largest structure in the solar system, behind only the heliosphere itself. (The heliosphere is the total area influenced by the Sun. Beyond it is interstellar space.) So far, scientists are dumbfounded by the strength of the magnetic field close to the cloud tops—and by its deviations. “What we’ve found is that the magnetic field is both stronger than where we expected it to be strong, and weaker where we expected it to be weak,” said Jack Connerney, the deputy principal investigator of Juno.

Another paper today in Science revealed new findings about Jupiter’s auroras. The Earth’s auroras are Sun-driven, the result of the interaction of the solar winds and Earth’s magnetosphere. Jupiter’s auroras have been known for a while to be different, and related to the planet’s rotation. Juno has taken measurements of the magnetic field and charged particles causing the auroras, and has also taken the first images of the southern aurora. The processes at work are still unknown, but the takeaway is that the mechanics behind Jupiter’s auroras are unlike those of Earth, and call into question how Jupiter interacts with its environment in space.

JUNO ALREADY HAS US REWRITING THE TEXTBOOKS


An enhanced-color closeup of swirling waves of clouds, some just 4 miles across. Some of the small, bright high clouds seem to form squall lines, or a narrow band of high winds and storms associated with a cold front. They're likely composed of water and/or ammonia ice.
NASA/SWRI/MSSS/Gerald Eichstädt/Seán Doran

Understanding Jupiter is essential to understanding not only how our solar system formed, but how the new systems being discovered around stars form and operate as well. The next close approach of Jupiter will take place on July 11, when Juno flies directly over the famed Great Red Spot. Scientists hope to learn more about its depth, action, and drivers.

Juno already has us rewriting the textbooks, and it's only at the beginning of its orbital mission. It's slated to perform 33 polar orbits of Jupiter, each lasting 53.5 days. So far, it's completed only five. The spacecraft’s prime mission will end next year, at which time NASA will have to decide whether it can afford to extend the mission or to send Juno into the heart of Jupiter, where it will be obliterated. This self-destruct plunge would protect that region of space from debris and local, potentially habitable moons from contamination.

Bolton tells Mental Floss that the surprising findings really bring home the fact that to unlock Jupiter, this mission will need to be seen through to completion. “That’s what exciting about exploration: We’re going to a place we’ve never been before and making new discoveries … we’re just scratching the surface.” he says. “Juno is the right tool to do this. We have the right instruments. We have the right orbit. We’re going to win over this beast and learn how it works.”

Original image
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
iStock
arrow
Words
15 Subatomic Word Origins
Original image
iStock

In July 2017, researchers at the European Organization for Nuclear Research (CERN) found evidence for a new fundamental particle of the universe: Ξcc++, a special kind of Xi baryon that may help scientists better understand how quarks are held together. Is that Greek to you? Well, it should be. The names for many of the particles that make up the universe—as well as a few that are still purely theoretical—come from ancient Greek. Here’s a look at 15 subatomic etymologies.

1. ION

An ion is any atom or molecule with an overall electric charge. English polymath William Whewell suggested the name in an 1834 letter to Michael Faraday, who made major discoveries in electromagnetism. Whewell based ion on the ancient Greek verb for “go” (ienai), as ions move towards opposite charges. Faraday and Whewell had previously considered zetode and stechion.

2. ELECTRON

George Stoney, an Anglo-Irish physicist, introduced the term electron in 1891 as a word for the fundamental unit of charge carried by an ion. It was later applied to the negative, nucleus-orbiting particle discovered by J. J. Thomson in 1897. Electron nabs the -on from ion, kicking off the convention of using -on as an ending for all particles, and fuses it with electric. Electric, in turn, comes from the Greek for “amber,” in which the property was first observed. Earlier in the 19th century, electron was the name for an alloy of gold and silver.

3. PROTON

The electron’s counterpart, the positively charged proton in the nuclei of all atoms, was named by its discoverer, Ernest Rutherford. He suggested either prouton or proton in honor of William Prout, a 19th-century chemist. Prout speculated that hydrogen was a part of all other elements and called its atom protyle, a Greek coinage joining protos ("first") and hule ("timber" or "material") [PDF]. Though the word had been previously used in biology and astronomy, the scientific community went with proton.

4. NEUTRON

Joining the proton in the nucleus is the neutron, which is neither positive nor negative: It’s neutral, from the Latin neuter, “neither.” Rutherford used neutron in 1921 when he hypothesized the particle, which James Chadwick didn’t confirm until 1932. American chemist William Harkins independently used neutron in 1921 for a hydrogen atom and a proton-electron pair. Harkins’s latter application calls up the oldest instance of neutron, William Sutherland’s 1899 name for a hypothetical combination of a hydrogen nucleus and an electron.

5. QUARK

Protons and neutrons are composed of yet tinier particles called quarks. For their distinctive name, American physicist Murray Gell-Mann was inspired in 1963 by a line from James Joyce’s Finnegan’s Wake: “Three quarks for Muster Mark.” Originally, Gell-Mann thought there were three types of quarks. We now know, though, there are six, which go by names that are just as colorful: up, down, charm, strange, top, and bottom.

6. MESON

Made up of a quark and an antiquark, which has identical mass but opposite charge, the meson is a short-lived particle whose mass is between that of a proton and an electron. Due to this intermediate size, the meson is named for the ancient Greek mesos, “middle.” Indian physicist Homi Bhabha suggested meson in 1939 instead of its original name, mesotron: “It is felt that the ‘tr’ in this word is redundant, since it does not belong to the Greek root ‘meso’ for middle; the ‘tr’ in neutron and electron belong, of course, to the roots ‘neutr’ and ‘electra’.”

7., 8., AND 9. BOSON, PHOTON, AND GLUON

Mesons are a kind of boson, named by English physicist Paul Dirac in 1947 for another Indian physicist, Satyendra Nath Bose, who first theorized them. Bosons demonstrate a particular type of spin, or intrinsic angular momentum, and carry fundamental forces. The photon (1926, from the ancient Greek for “light”) carries the electromagnetic force, for instance, while the gluon carries the so-called strong force. The strong force holds quarks together, acting like a glue, hence gluon.

10. HADRON

In 2012, CERN’s Large Hadron Collider (LHC) discovered a very important kind of boson: the Higgs boson, which generates mass. The hadrons the LHC smashes together at super-high speeds refer to a class of particles, including mesons, that are held together by the strong force. Russian physicist Lev Okun alluded to this strength by naming the particles after the ancient Greek hadros, “large” or “bulky,” in 1962.

11. LEPTON

Hadrons are opposite, in both makeup and etymology, to leptons. These have extremely tiny masses and don’t interact via the strong force, hence their root in the ancient Greek leptos, “small” or “slender.” The name was first suggested by the Danish chemist Christian Møller and Dutch-American physicist Abraham Pais in the late 1940s. Electrons are classified as leptons.

12. BARYON

Another subtype of hadron is the baryon, which also bears the stamp of Abraham Pais. Baryons, which include the more familiar protons and neutrons, are far more massive, relatively speaking, than the likes of leptons. On account of their mass, Pais put forth the name baryon in 1953, based on the ancient Greek barys, “heavy” [PDF].

13. AXION

Quirky Murray Gell-Mann isn't the only brain with a sense of humor. In his 2004 Nobel Prize lecture, American physicist Frank Wilczek said he named a “very light, very weakly interacting” hypothetical particle the axion back in 1978 “after a laundry detergent [brand], since they clean up a problem with an axial current” [PDF].

14. TACHYON

In ancient Greek, takhys meant “swift,” a fitting name for the tachyon, which American physicist Gerald Feinberg concocted in 1967 for a hypothetical particle that can travel faster than the speed of light. Not so fast, though, say most physicists, as the tachyon would break the fundamental laws of physics as we know them.

15. CHAMELEON

In 2003, the American physicist Justin Khoury and South African-American theoretical physicist Amanda Weltman hypothesized that the elusive dark energy may come in the form of a particle, which they cleverly called the chameleon. Just as chameleons can change color to suit their surroundings, so the physical characteristics of the chameleon particle change “depending on its environment,” explains Symmetry, the online magazine dedicated to particle physics. Chameleon itself derives from the ancient Greek khamaileon, literally “on-the-ground lion.”

For more particle names, see Symmetry’s “A Brief Etymology of Particle Physics,” which helped provide some of the information in this list.

Original image
This enhanced-color composite photo shows Jupiter’s south pole from NASA’s Juno spacecraft 32,000 miles above the gas giant. The oval features are cyclones up to 600 miles wide.
Ethan Miller/Getty Images
arrow
Space
Look Up! The Orionid Meteor Shower Peaks This Weekend
Original image
Ethan Miller/Getty Images

October is always a great month for skywatching. If you missed the Draconids, the first meteor shower of the month, don't despair: the Orionids peak this weekend. It should be an especially stunning show this year, as the Moon will offer virtually no interference. If you've ever wanted to get into skywatching, this is your chance.

The Orionids is the second of two meteor showers caused by the debris field left by the comet Halley. (The other is the Eta Aquarids, which appear in May.) The showers are named for the constellation Orion, from which they seem to originate.

All the stars are lining up (so to speak) for this show. First, it's on the weekend, which means you can stay up late without feeling the burn at work the next day. Tonight, October 20, you'll be able to spot many meteors, and the shower peaks just after midnight tomorrow, October 21, leading into Sunday morning. Make a late-night picnic of the occasion, because it takes about an hour for your eyes to adjust to the darkness. Bring a blanket and a bottle of wine, lay out and take in the open skies, and let nature do the rest.

Second, the Moon, which was new only yesterday, is but a sliver in the evening sky, lacking the wattage to wash out the sky or conceal the faintest of meteors. If your skies are clear and light pollution low, this year you should be able to catch about 20 meteors an hour, which isn't a bad way to spend a date night.

If clouds interfere with your Orionids experience, don't fret. There will be two more meteor showers in November and the greatest of them all in December: the Geminids.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios