iStock
iStock

Recent Hailstorm Is Colorado’s Most Expensive Catastrophe Ever

iStock
iStock

No storm that brings baseball-sized hail is going to be easy to deal with, but Denver’s recent thunderstorm proved to be a costly one. The May 8 hailstorm is the most costly insured catastrophe in the state, The Washington Post reports.

According to the Rocky Mountain Insurance Information Association, insurance claims in the state related to the hailstorm—for damages to cars and homes, for instance—cost as much as $1.4 billion. More than 50,000 homeowners filed claims, as did 150 car owners. That makes it the most expensive catastrophe in recent history for Colorado insurers.

Its costs easily surpassed those of previous storms. Adjusting for inflation, one of the most expensive storms for insurers on record before this, which took place in July 1990, cost $1.1 billion, and the second-most expensive storm, back in July 2009, cost a mere $845.5 million in today’s dollars.

Damage caused by the torrent of ice, which included baseball-sized hail, was worse than usual because it fell during rush hour, which means there were plenty of cars on the road when the windshield-crushing precipitation came down. At another time of day, some of those cars might have been inside garages and out of harm's way.

Recent research has found that extreme weather is becoming a more frequent occurrence across the world, and according to scientists, climate change will continue to increase the likelihood of extreme events like massive heat waves and intense storms. That's bad news for insurance companies: More frequent and more powerful storms mean that insurers are going to have to pay out a whole lot more money for damages than they used to.

[h/t The Washington Post]

nextArticle.image_alt|e
iStock
Britain Is in the Midst of a Rare ‘Wind Drought’
iStock
iStock

Generating renewable energy in Britain is a little less than a breeze these days: A “wind drought” is halting the country’s wind turbines.

This month’s wind energy output is down 40 percent from the same time last year, New Scientist reports. On average, about 15 percent of Britain’s electricity comes from wind power. Data starting from July 1 of this year put the monthly average closer to 6.9 percent. Last month, turbines were producing less than 2 percent of Britain’s electricity—the lowest output in two years.

That’s with even more wind turbines being installed over the course of the past year, New Scientist says. The data aren’t entirely surprising, though. The jet stream tends to make the UK’s weather drier and calmer during the summer and wetter and stormier during the winter. But the high pressure the jet stream has brought with it this year has been unusually prolonged, scientists say.

“It’s like a lid, it keeps everything still,” UK Met Office spokesperson Grahame Madge told New Scientist. “From the forecast looking out over the next couple of weeks, there doesn’t seem to be any significant change on the way.”

The wind drought shouldn’t cause too many problems in the short term. Electricity demand is low during the summer (very few British homes have air conditioning), and the country’s been able to compensate for the lack of wind by burning more natural gas. If the wind drought continues to persist, though, UK residents may begin to see an increase in utility fees. Natural gas prices have already risen with the increased demand.

“As we continue to transition to a low-carbon energy system, managing the intermittency of renewable power an important role in balancing supply and demand,” a National Grid spokesperson told New Scientist. “However, we have planned for these changes and [are] ready to play our part.”

The wind drought comes about eight years after British politicians vowed to reduce the UK's dependence on fossil fuels. Last year was the first year that electricity generated from low-carbon energy sources like solar power, wind power, and nuclear power outpaced high-carbon energy sources like coal and natural gas. This summer’s wind drought may make it difficult to improve on last year’s numbers.

[h/t New Scientist]

nextArticle.image_alt|e
iStock
Why Does the Sky Look Green Before a Tornado?
iStock
iStock

A common bit of folklore from tornado-prone parts of the U.S. says that when the skies start taking on an emerald hue, it's time to run inside. But why do tornadoes tend to spawn green skies in the first place? As SciShow's Michael Aranda explains, the answer has to do with the way water droplets reflect the colors of the light spectrum.

During the day, the sky is usually blue because the shorter, bluer end of the light spectrum bounces off air molecules better than than redder, longer-wavelength light. Conditions change during the sunset (and sunrise), when sunlight has to travel through more air, and when storms are forming, which means there are more water droplets around.

Tornadoes forming later in the day, around sunset, do a great job of reflecting the green part of the light spectrum that's usually hidden in a sunset because of the water droplets in the clouds, which bounce green light into our eyes. But that doesn't necessarily mean a twister is coming—it could just mean a lot of rain is in the forecast. Either way, heading inside is probably a good idea.

For the full details on how water and light conspire to turn the sky green before a storm, check out the SciShow video below.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios