Scientists Use the Tweaked Genes of a Virus to Halt Vision Loss

iStock
iStock

What if you could tweak the genes of a virus to turn its ability to invade cells into a delivery system for eyesight therapy? That’s what researchers at Johns Hopkins School of Medicine say they’ve done by modifying an adenovirus, a type of virus that can infect tissue linings. The cutting edge gene therapy was developed to help those who suffer vision loss from a particular eye disorder—wet age-related macular degeneration (AMD).

Approximately 1.6 million Americans have AMD, the number one cause of vision loss. The disease is characterized by the growth of abnormal blood vessels that leak retinal fluid into the eye and destroy the macula, an area near the retina important for high acuity vision. This gene therapy both reduces fluid buildup and improves vision loss in humans, according to study results published in The Lancet.

The best current treatment for the disease requires injections of antibodies into the retina to suppress vascular endothelial growth factor (VEGF), a protein that is responsible for the growth of blood vessels—which in turn cause leaking fluid. But the problem is that patients must obtain these injections at four- to six-week intervals, or else the disease symptoms return and worsen over time. Peter Campochiaro, a professor of ophthalmology and neuroscience at Johns Hopkins Medicine's Wilmer Eye Institute and one of the authors of the study, explains that during this treatment, if a patient takes too long to get their next injection, the abnormal blood vessel net grows larger and recruits other cells. “That scarring causes permanent decrease in vision,” he tells Mental Floss. So over time, it’s common even for patients in treatment to “end up with less vision.”

His team has been working to make a form of injections that last longer, so patients don’t have to come in as frequently. For phase one of this trial, Campochiaro’s team recruited 19 participants to participate in a 52-week study. He was looking for people “who don’t have great visual potential, but have evidence of the disease process that you can measure in effect,” he says.

Since viruses are naturally good at getting into cells and depositing their genetic material, the researchers decided to modify a virus to deposit a gene that codes for a protein called sFLT01. sFLT01 blocks the factor that causes the abnormal vessels and fluid production. When the modified virus is injected into the eye, “the viral vector enters cells and deposits the gene, and the gene begins to produce the [sFLT01] protein,” he says. The protein binds to VEGF, preventing it from causing vessel growth and subsequent fluid leakage.

The 19 participants were divided into five different groups and given increasing doses of the viral vector. After determining there was no toxicity at the dose-limit of the first three groups, they proceeded to increase the dosage to its highest level.

Of the 11 participants with symptoms judged to be reversible, six showed “a substantial reduction in the fluid,” and four of those six saw “a pretty dramatic effect.” Those patients had big pockets of fluid in their retinas decrease, Campochiaro says. Better yet, the treatment lasted throughout the yearlong study, though the protein numbers peaked at 26 weeks, and then declined slightly (although not enough to reactivate disease symptoms).

In assessing why five patients saw no reduction in fluid, the scientists discovered those patients had pre-existing antibodies to the virus. They theorize that in these patients, the immune system may have killed the viral vector before it could deposit the genes, though they will have to do more research to prove this. This could be a problem in using this particular virus—a carrier virus called AAV2—since some 60 percent of patients tend to have these antibodies.

A possible solution might be to give resistant patients a surgical injection instead. During this procedure, scientists could take out the vitreous—a gel-like substance that gives your eye its round shape—and inject the vector surgically under the retina instead. While patients might prefer not to have surgery, “our data suggests that it doesn’t matter if there’s pre-existing antibodies [with this method],” he says.

Alternately, other viral vectors have proven to be more effective than AAV2, including a variation on the virus, AAV8, which provides better infections of the virus into the cell. Even more promising, the researchers recently finished a four-year study on a lentiviral vector (a totally different group of viruses) “that take [the genes] into the nucleus of the cell and inserts the gene right into the chromosomes,” Campochiaro explains.

His next steps will be to retest the treatment with a longer study period to identify just how long-lasting the effects are, as well as to test higher doses of the viral vector.

But right now, he is just excited that the gene therapy works. “We injected this gene, the gene is producing a protein, and you can measure that protein in the eye over time,” he says.

Fossilized Fat Shows 550-Million-Year-Old Sea Creature May Have Been the World's First Animal

Ilya Bobrovskiy, the Australian National University
Ilya Bobrovskiy, the Australian National University

A bizarre sea creature whose fossils look like a cross between a leaf and a fingerprint may be Earth's oldest known animal, dating back 558 million years.

As New Scientist reports, researchers from the Australian National University (ANU) made a fortunate find in a remote region of Russia: a Dickinsonia fossil with fat molecules still attached. These odd, oval-shaped creatures were soft-bodied, had rib structures running down their sides, and grew about 4.5 feet long. They were as “strange as life on another planet,” researchers wrote in the abstract of a new paper published in the journal Science.

Another variety of fossil
Ilya Bobrovskiy, the Australian National University

Although Dickinsonia fossils were first discovered in South Australia in 1946, researchers lacked the organic matter needed to classify this creature. "Scientists have been fighting for more than 75 years over what Dickinsonia and other bizarre fossils of the Edicaran biota were: giant single-celled amoeba, lichen, failed experiments of evolution, or the earliest animals on Earth,” senior author Jochen Brocks, an associate professor at ANU, said in a statement.

With the discovery of cholesterol molecules—which are found in almost all animals, but not in other organisms like bacteria and amoebas—scientists can say that Dickinsonia were animals. The creatures swam the seas during the Ediacaran Period, 635 million to 542 million years ago. More complex organisms like mollusks, worms, and sponges didn’t emerge until 20 million years later.

The fossil with fat molecules was found on cliffs near the White Sea in an area of northwest Russia that was so remote that researchers had to take a helicopter to get there. Collecting the samples was a death-defying feat, too.

“I had to hang over the edge of a cliff on ropes and dig out huge blocks of sandstone, throw them down, wash the sandstone, and repeat this process until I found the fossils I was after,” lead author Ilya Bobrovskiy of ANU said. Considering that this find could change our understanding of Earth’s earliest life forms, it seems the risk was worth it.

[h/t New Scientist]

The Weird, Disturbing World of Snail Sex

iStock
iStock

Romance is rare in the animal kingdom. Instead of wooing their partners before copulating, male ducks force themselves onto females, depositing genetic material with spiky, corkscrew penises. Then, there's tardigrade sex, which is less violent but not exactly heartwarming. Females lay eggs into a husk of dead skin. The male then ejaculates onto the eggs while stroking the female, and the whole process can take up to an hour.

But you can't talk about disturbing mating rituals in nature without mentioning snails. If you're unfamiliar with snail sexuality, you may assume that snail sex falls on the vanilla side: The mollusks, after all, are famous for being slow-moving and they don't even have limbs. But if you have the patience to watch a pair of snails going at it, you'll notice that things get interesting.

The first factor that complicates snail sex is their genitalia. Snails are hermaphrodites, meaning individuals have both a male set and female set of parts, and any two snails can reproduce with each other regardless of sex. But in order for a couple of snails to make little snail babies, one of them needs to take on the role of the female. That's where the love dart comes in.

The love dart, technically called a gypsobelum, isn't exactly the Cupid's arrow the name suggests. It's a nail-clipping-sized spike that snails jab into their partners about 30 minutes before the actual sex act takes place. The sliver is packed with hormones that prepare the receiving snail's body for sperm. Depending on the species, only one snail might release the dart, or they both might in an attempt to avoid becoming the female of the pair. You can watch the action in the video below.

For sex to be successful, both snails must insert their penises into the other's vaginal tracts at the same time. Both snails deposit sperm, and the strength of the love dart ultimately determines whether or not that sperm fertilizes their partner's eggs.

That's assuming the snail survives the little love-stab. In human proportions, the love dart is the equivalent of a 15-inch knife. Fortunately, snails are resilient creatures, and gastropod researcher Joris Koene tells KQED he's only ever seen one snail die from the transfer.

Snails also have a way of making it up to their partners after skewering them with a hormone stick. Their sperm deposit contains a dose of fortifying nutrients, something scientists refer to as a nuptial gift. It may not equal the energy expended during sex, but its enough to give them a small post-coital boost.

SECTIONS

arrow
LIVE SMARTER