CLOSE
Original image
iStock

Testosterone May Protect Against Asthma

Original image
iStock

Asthma, a disease of the lungs that causes inflammation, swelling, wheezing and shortness of breath, affects both sexes, but with one notable difference: Boys tend to grow out of asthma after puberty, and men are far less likely to develop it in adulthood than women are. Australian researchers explored the idea that testosterone may have a protective effect against asthma—and they believe it does, pinpointing some of the mechanisms by which it occurs. Their study results are published in the Journal of Experimental Medicine.

To understand testosterone’s effects, says co-lead author Gabrielle Belz, a professor of molecular immunology at the University of Melbourne, you must first understand a family of immune cells known as innate lymphoid cells, or ILC2s. These cells are found on various surfaces in the body: the lungs, gastrointestinal tract, and the skin, to name a few. “Their job is to sense what’s happening in the external environment and make adjustments based on that,” Belz tells Mental Floss. In asthma, these cells proliferate in high numbers and accumulate in the airways where they trigger chemicals, such as cytokines and leukocytes, “that promote that inflammatory response that results in the airways swelling [and] narrowing, and shortness of breath occurs,” she says.

Males have fewer of these cells than females, Belz says, “because the testosterone receptor regulates the generation of these cells.” Plus, the androgen receptors, whose job it is to sense testosterone, become activated in the presence of testosterone. This suppresses the generation of these ILC2 cells, though Belz and her team are still exploring the mechanism by which it does so. With fewer cells present, there are fewer pro-inflammatory signals—which explains why men are less likely to develop asthma.

To test these effects in mouse models, the researchers ran a number of different experiments, beginning with a baseline analysis of the tissues of healthy male and female mice. They found a significantly increased presence of ILC2s in female mice compared to males, specifically in the lungs of the female mice, where the frequencies and total numbers of ILC2s were “twofold higher” than in males.

In another experiment, the researchers tested the tissue of mice that had been genetically modified not to have the testosterone-sensing androgen receptors—essentially, these mice lacked the ability to suppress the ILC2 cells, making them more likely to have asthma symptoms. These mice showed ILC2 numbers comparable to female mice, as did castrated male mice. The castrated male mice “responded as intact females, indicating that endogenous male sex hormones act as critical regulators [of ILC2s],” the authors write in their paper.

They also took tissue from male and female mice that had been given ovalbumin-induced asthma, and found that there were higher numbers of inflammatory leukocytes in the female mice than in the males.

The mouse models suggest that testosterone is protective against asthma, so the next steps are to study human immune cells from blood samples in a dish. Scientists could expose the human cells to different mediators to stimulate the testosterone pathway. They can also implant the human cells into mouse models to get a more accurate understanding of how the human cells might function. “Our preclinical animal modes are surrogates for the situations that might occur in humans,” Belz says.

This is all well and good if you’re male, but if you’re female, or a prepubescent child, further research is needed to come up with a treatment for asthma. Hormones are crucial for the development and growth of the body, so they can’t simply give testosterone to women and children with asthma “because that could disrupt a whole heap of things in the body,” Belz says. What they hope to do next is to discover receptors in women and children that they can target, and to create synthetic molecules that function in the same way as testosterone—without the impact of a hormone.

If they can achieve a synthetic testosterone, they would ideally be able to formulate an inhaled drug that can be taken through an inhaler, similar to other drugs for lung-related diseases.

Delving into these kinds of differences in how the sexes respond to disease is part of a "big push in the field to have a personalized approach to medicine," says Belz. "So you’d have a slightly different approach to males or females to get on top of these diseases."

Original image
iStock
arrow
Live Smarter
Trying to Save Money? Avoid Shopping on a Smartphone
Original image
iStock

Today, Americans do most of their shopping online—but as anyone who’s indulged in late-night retail therapy likely knows, this convenience often can come with an added cost. Trying to curb expenses, but don't want to swear off the convenience of ordering groceries in your PJs? New research shows that shopping on a desktop computer instead of a mobile phone may help you avoid making foolish purchases, according to Co. Design.

Ying Zhu, a marketing professor at the University of British Columbia-Okanagan, recently led a study to measure how touchscreen technology affects consumer behavior. Published in the Journal of Retailing and Consumer Services, her research found that people are more likely to make more frivolous, impulsive purchases if they’re shopping on their phones than if they’re facing a computer monitor.

Zhu, along with study co-author Jeffrey Meyer of Bowling Green State University, ran a series of lab experiments on student participants to observe how different electronic devices affected shoppers’ thinking styles and intentions. Their aim was to see if subjects' purchasing goals changed when it came to buying frivolous things, like chocolate or massages, or more practical things, like food or office supplies.

In one experiment, participants were randomly assigned to use a desktop or a touchscreen. Then, they were presented with an offer to purchase either a frivolous item (a $50 restaurant certificate for $30) or a useful one (a $50 grocery certificate for $30). These subjects used a three-point scale to gauge how likely they were to purchase the offer, and they also evaluated how practical or frivolous each item was. (Participants rated the restaurant certificate to be more indulgent than the grocery certificate.)

Sure enough, the researchers found that participants had "significantly higher" purchase intentions for hedonic (i.e. pleasurable) products when buying on touchscreens than on desktops, according to the study. On the flip side, participants had significantly higher purchase intentions for utilitarian (i.e. practical) products while using desktops instead of touchscreens.

"The playful and fun nature of the touchscreen enhances consumers' favor of hedonic products; while the logical and functional nature of a desktop endorses the consumers' preference for utilitarian products," Zhu explains in a press release.

The study also found that participants using touchscreen technology scored significantly higher on "experiential thinking" than subjects using desktop computers, whereas those with desktop computers demonstrated higher scores for rational thinking.

“When you’re in an experiential thinking mode, [you crave] excitement, a different experience,” Zhu explained to Co. Design. “When you’re on the desktop, with all the work emails, that interface puts you into a rational thinking style. While you’re in a rational thinking style, when you assess a product, you’ll look for something with functionality and specific uses.”

Zhu’s advice for consumers looking to conserve cash? Stow away the smartphone when you’re itching to splurge on a guilty pleasure.

[h/t Fast Company]

arrow
Animals
Elusive Butterfly Sighted in Scotland for the First Time in 133 Years

Conditions weren’t looking too promising for the white-letter hairstreak, an elusive butterfly that’s native to the UK. Threatened by habitat loss, the butterfly's numbers have dwindled by 96 percent since the 1970s, and the insect hasn’t even been spotted in Scotland since 1884. So you can imagine the surprise lepidopterists felt when a white-letter hairstreak was seen feeding in a field in Berwickshire, Scotland earlier in August, according to The Guardian.

A man named Iain Cowe noticed the butterfly and managed to capture it on camera. “It is not every day that something as special as this is found when out and about on a regular butterfly foray,” Cowe said in a statement provided by the UK's Butterfly Conservation. “It was a very ragged and worn individual found feeding on ragwort in the grassy edge of an arable field.”

The white-letter hairstreak is a small brown butterfly with a white “W”-shaped streak on the underside of its wings and a small orange spot on its hindwings. It’s not easily sighted, as it tends to spend most of its life feeding and breeding in treetops.

The butterfly’s preferred habitat is the elm tree, but an outbreak of Dutch elm disease—first noted the 1970s—forced the white-letter hairstreak to find new homes and food sources as millions of Britain's elm trees died. The threatened species has slowly spread north, and experts are now hopeful that Scotland could be a good home for the insect. (Dutch elm disease does exist in Scotland, but the nation also has a good amount of disease-resistant Wych elms.)

If a breeding colony is confirmed, the white-letter hairstreak will bump Scotland’s number of butterfly species that live and breed in the country up to 34. “We don’t have many butterfly species in Scotland so one more is very nice to have,” Paul Kirkland, director of Butterfly Conservation Scotland, said in a statement.

Prior to 1884, the only confirmed sighting of a white-letter hairstreak in Scotland was in 1859. However, the insect’s newfound presence in Scotland comes at a cost: The UK’s butterflies are moving north due to climate change, and the white-letter hairstreak’s arrival is “almost certainly due to the warming climate,” Kirkland said.

[h/t The Guardian]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios