iStock
iStock

Testosterone May Protect Against Asthma

iStock
iStock

Asthma, a disease of the lungs that causes inflammation, swelling, wheezing and shortness of breath, affects both sexes, but with one notable difference: Boys tend to grow out of asthma after puberty, and men are far less likely to develop it in adulthood than women are. Australian researchers explored the idea that testosterone may have a protective effect against asthma—and they believe it does, pinpointing some of the mechanisms by which it occurs. Their study results are published in the Journal of Experimental Medicine.

To understand testosterone’s effects, says co-lead author Gabrielle Belz, a professor of molecular immunology at the University of Melbourne, you must first understand a family of immune cells known as innate lymphoid cells, or ILC2s. These cells are found on various surfaces in the body: the lungs, gastrointestinal tract, and the skin, to name a few. “Their job is to sense what’s happening in the external environment and make adjustments based on that,” Belz tells Mental Floss. In asthma, these cells proliferate in high numbers and accumulate in the airways where they trigger chemicals, such as cytokines and leukocytes, “that promote that inflammatory response that results in the airways swelling [and] narrowing, and shortness of breath occurs,” she says.

Males have fewer of these cells than females, Belz says, “because the testosterone receptor regulates the generation of these cells.” Plus, the androgen receptors, whose job it is to sense testosterone, become activated in the presence of testosterone. This suppresses the generation of these ILC2 cells, though Belz and her team are still exploring the mechanism by which it does so. With fewer cells present, there are fewer pro-inflammatory signals—which explains why men are less likely to develop asthma.

To test these effects in mouse models, the researchers ran a number of different experiments, beginning with a baseline analysis of the tissues of healthy male and female mice. They found a significantly increased presence of ILC2s in female mice compared to males, specifically in the lungs of the female mice, where the frequencies and total numbers of ILC2s were “twofold higher” than in males.

In another experiment, the researchers tested the tissue of mice that had been genetically modified not to have the testosterone-sensing androgen receptors—essentially, these mice lacked the ability to suppress the ILC2 cells, making them more likely to have asthma symptoms. These mice showed ILC2 numbers comparable to female mice, as did castrated male mice. The castrated male mice “responded as intact females, indicating that endogenous male sex hormones act as critical regulators [of ILC2s],” the authors write in their paper.

They also took tissue from male and female mice that had been given ovalbumin-induced asthma, and found that there were higher numbers of inflammatory leukocytes in the female mice than in the males.

The mouse models suggest that testosterone is protective against asthma, so the next steps are to study human immune cells from blood samples in a dish. Scientists could expose the human cells to different mediators to stimulate the testosterone pathway. They can also implant the human cells into mouse models to get a more accurate understanding of how the human cells might function. “Our preclinical animal modes are surrogates for the situations that might occur in humans,” Belz says.

This is all well and good if you’re male, but if you’re female, or a prepubescent child, further research is needed to come up with a treatment for asthma. Hormones are crucial for the development and growth of the body, so they can’t simply give testosterone to women and children with asthma “because that could disrupt a whole heap of things in the body,” Belz says. What they hope to do next is to discover receptors in women and children that they can target, and to create synthetic molecules that function in the same way as testosterone—without the impact of a hormone.

If they can achieve a synthetic testosterone, they would ideally be able to formulate an inhaled drug that can be taken through an inhaler, similar to other drugs for lung-related diseases.

Delving into these kinds of differences in how the sexes respond to disease is part of a "big push in the field to have a personalized approach to medicine," says Belz. "So you’d have a slightly different approach to males or females to get on top of these diseases."

arrow
Medicine
Charles Dickens Museum Highlights the Author's Contributions to Science and Medicine

Charles Dickens is celebrated for his verbose prose and memorable opening lines, but lesser known are his contributions to science—particularly the field of medicine.

A new exhibition at London’s Charles Dickens Museum—titled "Charles Dickens: Man of Science"—is showcasing the English author’s scientific side. In several instances, the writer's detailed descriptions of medical conditions predated and sometimes even inspired the discovery of several diseases, The Guardian reports.

In his novel Dombey and Son, the character of Mrs. Skewton was paralyzed on her right side and unable to speak. Dickens was the first person to document this inexplicable condition, and a scientist later discovered that one side of the brain was largely responsible for speech production. "Fat boy" Joe, a character in The Pickwick Papers who snored loudly while sleeping, later lent his namesake to Pickwickian Syndrome, otherwise known as obesity hypoventilation syndrome.

A figurine of Fat Boy Joe
Courtesy of the Charles Dickens Museum

Dickens also wrote eloquently about the symptoms of tuberculosis and dyslexia, and some of his passages were used to teach diagnosis to students of medicine.

“Dickens is an unbelievably acute observer of human behaviors,” museum curator Frankie Kubicki told The Guardian. “He captures these behaviors so perfectly that his descriptions can be used to build relationships between symptoms and disease.”

Dickens was also chummy with some of the leading scientists of his day, including Michael Faraday, Charles Darwin, and chemist Jane Marcet, and the exhibition showcases some of the writer's correspondence with these notable figures. Beyond medicine, Dickens also contributed to the fields of chemistry, geology, and environmental science.

Less scientifically sound was the author’s affinity for mesmerism, a form of hypnotism introduced in the 1770s as a method of controlling “animal magnetism,” a magnetic fluid which proponents of the practice believed flowed through all people. Dickens studied the methods of mesmerism and was so convinced by his powers that he later wrote, “I have the perfect conviction that I could magnetize a frying-pan.” A playbill of Animal Magnetism, an 1857 production that Dickens starred in, is also part of the exhibit.

A play script from Animal Magnetism
Courtesy of the Charles Dickens Museum

Located at 48-49 Doughty Street in London, the exhibition will be on display until November 11, 2018.

[h/t The Guardian]

nextArticle.image_alt|e
iStock
arrow
Health
Feeling Down? Lifting Weights Can Lift Your Mood, Too
iStock
iStock

There’s plenty of research that suggests that exercise can be an effective treatment for depression. In some cases of depression, in fact—particularly less-severe ones—scientists have found that exercise can be as effective as antidepressants, which don’t work for everyone and can come with some annoying side effects. Previous studies have largely concentrated on aerobic exercise, like running, but new research shows that weight lifting can be a useful depression treatment, too.

The study in JAMA Psychiatry, led by sports scientists at the University of Limerick in Ireland, examined the results of 33 previous clinical trials that analyzed a total of 1877 participants. It found that resistance training—lifting weights, using resistance bands, doing push ups, and any other exercises targeted at strengthening muscles rather than increasing heart rate—significantly reduced symptoms of depression.

This held true regardless of how healthy people were overall, how much of the exercises they were assigned to do, or how much stronger they got as a result. While the effect wasn’t as strong in blinded trials—where the assessors don’t know who is in the control group and who isn’t, as is the case in higher-quality studies—it was still notable. According to first author Brett Gordon, these trials showed a medium effect, while others showed a large effect, but both were statistically significant.

The studies in the paper all looked at the effects of these training regimes on people with mild to moderate depression, and the results might not translate to people with severe depression. Unfortunately, many of the studies analyzed didn’t include information on whether or not the patients were taking antidepressants, so the researchers weren’t able to determine what role medications might play in this. However, Gordon tells Mental Floss in an email that “the available evidence supports that [resistance training] may be an effective alternative and/or adjuvant therapy for depressive symptoms that could be prescribed on its own and/or in conjunction with other depression treatments,” like therapy or medication.

There haven’t been a lot of studies yet comparing whether aerobic exercise or resistance training might be better at alleviating depressive symptoms, and future research might tackle that question. Even if one does turn out to be better than the other, though, it seems that just getting to the gym can make a big difference.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios