CLOSE
NASA // Public Domain
NASA // Public Domain

On This Day in 1973, Skylab Launched

NASA // Public Domain
NASA // Public Domain

On May 14, 1973 NASA launched Skylab, the first American space station. It fell to earth six years later, burning up in 1979.

Skylab itself was a heavily modified third stage of a Saturn V rocket—the same system we used to send Apollo missions to the moon. The station was huge, measuring more than 80 feet long, with a 21-foot diameter. During launch, Skylab 1 suffered major damage to its solar array, which delayed launch of the Skylab 2 crew (originally intended to launch the day after Skylab itself reached orbit). The Skylab 2 mission was modified to include repair work to the solar power system and installation of a solar heat shield, as the original one was lost during launch. The Skylab 2 crew launched on May 25, 1973.

The Skylab missions resulted in new information about long-term space habitation (including an awesome space shower). The first crew spent 28 days in space; the second 59 days; and the last crew (Skylab 4) spent 84 days up there. That last record was not broken by an American for two decades. Skylab also focused on solar science, earth science, and microgravity experiments.

Skylab was something of a bridge between the Apollo and Space Shuttle programs. Indeed, Skylab was supposed to be serviced (and its orbit boosted) by the first Shuttle, but it wasn't ready in time. Skylab's orbit decayed, eventually causing it to disintegrate and fall to Earth in 1979. Chunks of the station made a bit of a fireworks display streaking through the atmosphere, and ultimately littered a swath of Australia. No injuries were reported from the falling debris, though media coverage of the re-entry was intense.

Here's a half-hour NASA documentary on Skylab, explaining the story of the station and focusing on the science conducted in orbit. Have a look:

If you'd like to relive the launch, here's live TV coverage from that day.

nextArticle.image_alt|e
iStock
arrow
Space
Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System
iStock
iStock

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

nextArticle.image_alt|e
iStock
arrow
science
Ocean Waves Are Powerful Enough to Toss Enormous Boulders Onto Land, Study Finds
iStock
iStock

During the winter of 2013-2014, the UK and Ireland were buffeted by a number of unusually powerful storms, causing widespread floods, landslides, and coastal evacuations. But the impact of the storm season stretched far beyond its effect on urban areas, as a new study in Earth-Science Reviews details. As we spotted on Boing Boing, geoscientists from Williams College in Massachusetts found that the storms had an enormous influence on the remote, uninhabited coast of western Ireland—one that shows the sheer power of ocean waves in a whole new light.

The rugged terrain of Ireland’s western coast includes gigantic ocean boulders located just off a coastline protected by high, steep cliffs. These massive rocks can weigh hundreds of tons, but a strong-enough wave can dislodge them, hurling them out of the ocean entirely. In some cases, these boulders are now located more than 950 feet inland. Though previous research has hypothesized that it often takes tsunami-strength waves to move such heavy rocks onto land, this study finds that the severe storms of the 2013-2014 season were more than capable.

Studying boulder deposits in Ireland’s County Mayo and County Clare, the Williams College team recorded two massive boulders—one weighing around 680 tons and one weighing about 520 tons—moving significantly during that winter, shifting more than 11 and 13 feet, respectively. That may not sound like a significant distance at first glance, but for some perspective, consider that a blue whale weighs about 150 tons. The larger of these two boulders weighs more than four blue whales.

Smaller boulders (relatively speaking) traveled much farther. The biggest boulder movement they observed was more than 310 feet—for a boulder that weighed more than 44 tons.

These boulder deposits "represent the inland transfer of extraordinary wave energies," the researchers write. "[Because they] record the highest energy coastal processes, they are key elements in trying to model and forecast interactions between waves and coasts." Those models are becoming more important as climate change increases the frequency and severity of storms.

[h/t Boing Boing]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios