10 Facts About the Lungs

iStock/pixelfit
iStock/pixelfit

Every cell in your body needs oxygen in order to function properly. Your lungs are obviously crucial in achieving this goal—once you take air into your lungs, oxygen enters the bloodstream and moves through your body. Each cell makes a trade, exchanging oxygen for carbon dioxide—which your bloodstream then transports back to the lungs. When you exhale, you’re actually expelling carbon dioxide (CO2), nitrogen, and water vapor.

So how does your body make this happen? Bronchial tubes connect your lungs to your throat and mouth. These are lined with tiny little hairs called cilia that move in wave-like patterns, which pushes mucus up your throat. At the base of the bronchial tubes are tiny air sacs that hold the air you breathe in, called alveoli. Your right lung has three balloon-like sections, called lobes, which are full of spongy tissue. Your left lung has only two lobes, to make room for the heart. They sit in a special membrane called the pleura, that separates your lungs from the wall of your chest. Altogether, your lungs are a highly efficient machine—and they do a lot more than you might think.

1. Taking in oxygen is only one of your lungs' most important jobs. 

Yes, you need oxygen to live, but if you didn’t expel the carbon dioxide in your lungs, you would die. Carbon dioxide acts as an acid in the body and is generated by muscle action, Wendie Howland, a nurse with Howland Health Consulting, tells Mental Floss. “Your body operates optimally at a fairly narrow pH range, and when you generate extra CO2 by, say, running up the stairs, you bring your pH into the normal range almost immediately by excreting CO2 by breathing deeply.” So exhaling that more toxic CO2 is as important as taking in oxygen.

2. Think of your lungs as big ol' buckets.

Rather than thinking of your lungs as big balloons, Cascari says, “Think of your lungs as buckets of blood with air bubbles going through them.” In fact, your lungs contain as much blood as the entire rest of your body, which is why your center of gravity is above your waist. They produce blood cells as well. Every time your heart beats, it sends an equal amount of blood to your lungs as it does everywhere else in your body. “It’s this incredible system that can respire—an exchange of gas from the air into the blood and the lungs—without leaking. The fact that that goes on day in day out for our whole life is pretty amazing,” he says.

3. Your lungs are huge.

Your lungs are one of your biggest organs, but you might be surprised to learn that if you spread out the surface area of the alveoli, the sacs where oxygen and blood interface, you could cover an entire tennis court, Schroeder says.

4. Without mucus, your lungs would dry up. 

You may not be a big fan of mucus when it’s clogging your chest or nose during a cold, but it’s a “highly underrated, powerful infection-fighting agent in your body with some pretty cool features," says Ray Casciari, a pulmonologist at St. Joseph Hospital in Orange, California. “It’s actually cleaner than blood,” Casciari reveals. “If you take bacteria and expose it to mucus, the mucus will stop the growth of the bacteria. Whereas blood will actually support the growth of the bacteria.” (In fact, researchers in laboratories often deliberately use blood to grow bacteria.) Your mucus is such an important protective agent that you’d die without it. “If you didn’t have mucus in your lungs, you would dehydrate, losing so much water through evaporation that you would die within minutes,” he says. On the other hand, too much mucus production is dangerous.

5. Whatever you inhale quickly goes from your lungs to your brain. 

In under seven seconds, to be precise. Because of your lungs’ enormous surface area and “its intimate relationship with blood vessels that surround it,” says Scott Schroeder, director of Pediatric Pulmonary Medicine at the Floating Hospital of Tufts Medical Center, an inhalation of smoke or a vaporized medicine can reach the brain very quickly.

6. Coughing isn't always bad for your lungs.

Even when you aren’t sick, a normal person coughs about 10 times per day, says Schroeder—whether due to a sticky piece of food, an allergen you accidentally inhale, or your own mucus generated by exercise.

7. Asthma isn't just one disease affecting lung function.

Asthma, which causes wheezing, coughing, and shortness of breath, is actually a number of different illnesses under one name, Schroeder says. The good news is that deaths due to asthma are very uncommon, and have decreased significantly over the last 20 years, he reports (with one notable exception—African-American men age 18–24). But it doesn’t affect everyone equally. Women are much more likely to develop asthma as adults than men, especially if they are overweight. And people in urban areas are more likely to suffer from asthma than those in rural areas, likely due to increased particulate matter in the air from car exhaust and industrial pollutants.

8. Exercise can make asthma—and your lung function—better.

Asthma is actually improved by cardiovascular exercise. Schroeder says there are no sports that people with asthma cannot participate in, “except scuba diving, but I don’t consider that a sport.”

9. You can get lung cancer even if you've never smoked.

“You can spend your whole life in a very clean environment, never having smoked, and still get lung cancer,” Casciari says. Not all lung cancer is caused by cigarette smoking (though the majority is). Casciari cites occupational exposure, radiation exposure, and potential genetic risk factors, although researchers are still exploring the role genetics play. “Folks tend to think of their lungs very little, and when they do, they think, ‘I don’t smoke, so I’m ok,’ but that’s not completely true.”

10. Breakthroughs in lung cancer treatments has improved survival rates. 

For decades, toxic chemotherapy has been the best medicine for treating lung cancer, but it comes with intense side effects. However, several new breakthroughs have recently improved outcomes for patients, says Casciari. Thoracic CT scans, for example, improve survival by 20 percent by providing earlier diagnosis and treatments. Furthermore, new minimally invasive surgery techniques have made recovery from lung cancer surgery much easier, with people being discharged on the same day of surgery. Finally, immunotherapies that target specific cancer markers and harness the immune system itself to fight cancer cells have improved outcomes—and decreased side effects—for lung cancer patients.

This story was first published in 2017.

‘Water’ in Kansas City Woman’s Ear Turned Out to Be a Venomous Brown Recluse Spider

N-sky/iStock via Getty Images
N-sky/iStock via Getty Images

Susie Torres, a resident of Kansas City, Missouri, woke up on Tuesday morning with the distinct feeling that water was lodged in her left ear. She likened it to the swooshing sensation that can often happen after swimming, WDAF-TV reports.

Instead of waiting for the problem to resolve itself, Torres went to the doctor—a decision that might have saved her from some serious pain. The medical assistant was the first to realize something was alarmingly amiss, and immediately called for backup.

“She ran out and said ‘I’m going to get a couple more people,’” Torres told 41 Action News. “She then said, ‘I think you have an insect in there.’” For many people, the thought of having any live insect stuck in an ear would be enough to cue a small- or large-scale freak-out, but Torres stayed calm.

The doctors “had a few tools and worked their magic and got it out,” Torres said. The “it” in question turned out to be a spider—and not just any harmless house spider (which you shouldn’t kill, by the way). It was a venomous brown recluse spider.

“Gross,” Torres told WDAF-TV. “Why, where, what, and how.”

Miraculously, the spider didn’t bite Torres. If it had, she would’ve ended up visiting the doctor with more than general ear discomfort: Brown recluse bites can cause pain, burning, fever, nausea, and purple or blue discoloration of the surrounding skin, according to Healthline.

Torres may have remained admirably level-headed throughout the ordeal, but that doesn’t mean she’s taking it lightly. “I went and put some cotton balls in my ears last night,” she told WDAF-TV. “I’m shaking off my clothes, and I don’t put my purse on the floor. I’m a little more cautious.”

Is this the first time an insect has posted up in the ear of an unsuspecting, innocent human? Absolutely not—here are six more horror stories, featuring a cockroach, a bed bug, and more.

[h/t WDAF-TV]

12 Fantastic Facts About the Immune System

monkeybusinessimages/iStock via Getty Images
monkeybusinessimages/iStock via Getty Images

If it weren't for our immune system, none of us would live very long. Not only does the immune system protect us from external pathogens like viruses, bacteria, and parasites, but it also battles cells that have mutated due to illnesses, like cancer, within the body. Here are 12 fascinating facts about the immune system.

1. The immune system saves lives.

The immune system is a complex network of tissues and organs that spreads throughout the entire body. In a nutshell, it works like this: A series of "sensors" within the system detects an intruding pathogen, like bacteria or a virus. Then the sensors signal other parts of the system to kill the pathogen and eliminate the infection.

"The immune system is being bombarded by all sorts of microbes all the time," Russell Vance, professor of immunology at University of California, Berkeley and an investigator for the Howard Hughes Medical Institute, tells Mental Floss. "Yet, even though we're not aware of it, it's saving our lives every day, and doing a remarkably good job of it."

2. Before scientists understood the immune system, illness was chalked up to unbalanced humors.

Long before physicians realized how invisible pathogens interacted with the body's system for fighting them off, doctors diagnosed all ills of the body and the mind according to the balance of "four humors": melancholic, phlegmatic, choleric, or sanguine. These criteria, devised by the Greek philosopher Hippocrates, were divided between the four elements, which were linked to bodily fluids (a.k.a. humors): earth (black bile), air (blood), water (phlegm) and fire (yellow bile), which also carried properties of cold, hot, moist, or dry. Through a combination of guesswork and observation, physicians would diagnose patients' humors and prescribe treatment that most likely did little to support the immune system's ability to resist infection.

3. Two men who unraveled the immune system's functions were bitter rivals.

Two scientists who discovered key functions of the immune system, Louis Pasteur and Robert Koch, should have been able to see their work as complementary, but they wound up rivals. Pasteur, a French microbiologist, was famous for his experiments demonstrating the mechanism of vaccines using weakened versions of the microbes. Koch, a German physician, established four essential conditions under which pathogenic bacteria can infect hosts, and used them to identify the Mycobacterium tuberculosis bacterium that causes tuberculosis. Though both helped establish the germ theory of disease—one of the foundations of modern medicine today—Pasteur and Koch's feud may have been aggravated by nationalism, a language barrier, criticisms of each other's work, and possibly a hint of jealousy.

4. Specialized blood cells are the immune system's greatest weapon.

The most powerful weapons in your immune system's arsenal are white blood cells, divided into two main types: lymphocytes, which create antigens for specific pathogens and kill them or escort them out of the body; and phagocytes, which ingest harmful bacteria. White blood cells not only attack foreign pathogens, but recognize these interlopers the next time they meet them and respond more quickly. Many of these immune cells are produced in your bone marrow but also in the spleen, lymph nodes, and thymus, and are stored in some of these tissues and other areas of the body. In the lymph nodes, which are located throughout your body but most noticeably in your armpits, throat, and groin, lymphatic fluid containing white blood cells flows through vein-like tubules to escort foreign invaders out.

5. The spleen helps your immune system work.

Though you can live without the spleen, an organ that lies between stomach and diaphragm, it's better to hang onto it for your immune function. According to Adriana Medina, a doctor who specializes in hematology and oncology at the Alvin and Lois Lapidus Cancer Institute at Sinai Hospital in Baltimore, your spleen is "one big lymph node" that makes new white blood cells and cleans out old blood cells from the body.

It's also a place where immune cells congregate. "Because the immune cells are spread out through the body," Vance says, "eventually they need to communicate with each other." They do so in both the spleen and lymph nodes.

6. You have immune cells in all of your tissues.

While immune cells may congregate more in lymph nodes than elsewhere, "every tissue in your body has immune cells stationed in it or circulating through it, constantly roving for signs of attack," Vance explains. These cells also circulate through the blood. The reason for their widespread presence is that there are thousands of different pathogens that might infect us, from bacteria to viruses to parasites. "To eliminate each of those different kinds of threats requires specialized detectors," he says.

7. How friendly you're feeling could be linked to your immune system.

From an evolutionary perspective, humans' high sociability may have less to do with our bigger brains, and more to do with our immune system's exposure to a greater number of bacteria and other pathogens.

Researchers at the University of Virginia School of Medicine have theorized that interferon gamma (IG), a substance that helps the immune system fight invaders, was linked to social behavior, which is one of the ways we become exposed to pathogens.

In mice, they found IG acted as a kind of brake to the brain's prefrontal cortex, essentially stopping aberrant hyperactivity that can cause negative changes in social behavior. When they blocked the IG molecule, the mice's prefrontal cortexes became hyperactive, resulting in less sociability. When they restored the function, the mice's brains returned to normal, as did their social behavior.

8. Your immune system might recruit unlikely organs, like the appendix, into service.

The appendix gets a bad rap as a vestigial organ that does nothing but occasionally go septic and create a need for immediate surgery. But the appendix may help keep your gut in good shape. According to Gabrielle Belz, professor of molecular immunology at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, research by Duke University's Randal Bollinger and Bill Parker suggests the appendix houses symbiotic bacteria that are important for overall gut health—especially after infections wipe out the gut's good microbes. Special immune cells known as innate lymphoid cells (ILCs) in the appendix may help to repopulate the gut with healthy bacteria and put the gut back on track to recovery.

9. Gut bacteria has been shown to boost immune systems in mice.

Researchers at the University of Chicago noticed that one group of mice in their lab had a stronger response to a cancer treatment than other mice. They eventually traced the reason to a strain of bacteria—Bifidobacterium—in the mice's guts that boosted the animals' immune system to such a degree they could compare it to anti-cancer drugs called checkpoint inhibitors, which keep the immune system from overreacting.

To test their theory, they transferred fecal matter from the robust mice to the stomachs of less immune-strengthened mice, with positive results: The treated mice mounted stronger immune responses and tumor growth slowed. When they compared the bacterial transfer effects with the effects of a checkpoint inhibitor drug, they found that the bacteria treatment was just as effective. The researchers believe that, with further study, the same effect could be seen in human cancer patients.

10. Scientists are trying to harness the immune system's "Pac-Man" cells to treat cancer.

Aggressive pediatric tumors are difficult to treat due to the toxicity of chemotherapy, but some researchers are hoping to develop effective treatments without the harmful side effects. Stanford researchers designed a study around a recently discovered molecule known as CD47, a protein expressed on the surface of all cells, and how it interacts with macrophages, white blood cells that kill abnormal cells. "Think of the macrophages as the Pac-Man of the immune system," Samuel Cheshier, lead study author and assistant professor of neurosurgery at Stanford Medicine, tells Mental Floss.

CD47 sends the immune system's macrophages a "don't eat me" signal. Cancer cells fool the immune system into not destroying them by secreting high amounts of CD47. When Cheshier and his team blocked the CD47 signals on cancer cells, the macrophages could identify the cancer cells and eat them, without toxic side effects to healthy cells. The treatment successfully shrank all five of the common pediatric tumors, without the nasty side effects of chemotherapy.

11. A new therapy for type 1 diabetes tricks the immune system.

In those with type 1 diabetes, the body attacks its own pancreatic cells, interrupting its normal ability to produce insulin in response to glucose. In a 2016 paper, researchers at MIT, in collaboration with Boston's Children's Hospital, successfully designed a new material that allows them to encapsulate and transplant healthy pancreatic "islet" cells into diabetic mice without triggering an immune response. Made from seaweed, the substance is benign enough that the body doesn't react to it, and porous enough to allow the islet cells to be placed in the abdomen of mice, where they restore the pancreatic function. Senior author Daniel Anderson, an associate professor at MIT, said in a statement that this approach "has the potential to provide [human] diabetics with a new pancreas that is protected from the immune system, which would allow them to control their blood sugar without taking drugs. That's the dream."

12. Immunotherapy is on the cutting edge of immune system research.

Over the last few years, research in the field of immunology has focused on developing cancer treatments using immunotherapy. This method engineers the patient's own normal cells to attack the cancer cells. Vance says the technique could be used for many more conditions. "I feel like that could be just the tip of the iceberg," he says. "If we can understand better what the cancer and immunotherapy is showing, maybe we can go in there and manipulate the immune responses and get good outcomes for other diseases, too."

SECTIONS

arrow
LIVE SMARTER