CLOSE
Lost-World.Com
Lost-World.Com

Will We Ever Be Able to Clone Dinosaurs?

Lost-World.Com
Lost-World.Com

Jurassic Park turns 20 this year, and today, a 3D version of the film hits screens nationwide. We asked Brian Switek, a science writer specializing in evolution, paleontology, and natural history, to weigh in on the movie's basic premise—that dinosaurs are cloned using DNA taken from mosquitoes.

When I was a little dinosaur fan, all I wanted was a pet dinosaur. An Apatosaurus would have been choice—big enough to be impressive, but not especially likely to eat me. But that’s never going to happen. As much as I hate to say that science will never solve a particular question or problem, the barriers to a real life Jurassic Park are insurmountable.

Time is the critical factor. The last of the non-avian dinosaurs—the undeniably awesome ones that haunt museum halls and our dreams—died out 66 million years ago. That’s so distant from us that we can’t even really comprehend how long that is, and we lost whatever chance we might have had at cloning dinosaurs within a relatively short time following the end-Cretaceous mass extinction.

This is not the dinosaur goo you’re looking for…

You may have heard that paleontologist Mary Schweitzer and colleagues have extracted some soft tissue remnants from the Cretaceous dinosaurs Tyrannosaurus and the hadrosaur Brachylophosaurus. These claims have been controversial, but they cannot be discounted. Schweitzer and others have built a startling argument that in exceptional cases, fragments of original dinosaur protein may have survived to this day. But that’s not what we need to clone a dinosaur. The starting point of any dinosaur resurrection exercise is DNA. Unfortunately for paleo nerds such as myself, DNA has a relatively short half life. There’s virtually no chance of ever recovering dinosaur genetic material.

For years, researchers have known that DNA starts to break down almost immediately after an organism perishes. Even in exceptionally-preserved animals from more recent times—such as frozen woolly mammoths found in Arctic permafrost—the genetic material of the creatures has unraveled into fragments of what once was. But it was only late last year that University of Copenhagen palaeogeneticist Morten Allentoft and coauthors figured out what the rate of DNA degradation is.

The disintegration of “Mr. DNA”

By looking to bones of recently-extinct avian dinosaurs—specifically, the 8000- to 600-year-old bones of giant, flightless birds called moa that once strode over New Zealand—the geneticists calculated that DNA has a half-life of 521 years. That’s longer than researchers expected, but not nearly long enough to allow us to ever obtain Tyrannosaurus or Triceratops DNA (much less far more ancient dinosaurs such as Brachiosaurus and Dilophosaurus). Even under ideal conditions wherein bones would remain dry and chilled at a temperature of 23 degrees Fahrenheit or lower, the entirety of a creature’s genome would be obliterated within 6.8 million years, or about 59 million years short of the last non-avian dinosaurs.

It’s really as simple as that. No DNA, no revived Velociraptor. (I’m not entirely sure whether that’s a good or bad thing.) And the whole “dinosaur blood from amber” would not have worked, either.

Let’s assume for a second that the fossilized tree sap and insect within were exempt from biological reality and actually contained DNA. Drilling through the amber to get to the insect’s gut contents would be an exercise in contamination—mashing genetic material from the tree, insect, and dinosaur gunk together.

But for the sake of the movies, let’s stretch our suspension of disbelief a little bit further. Let’s say that through magic or other equally impossible methodology, scientists are able to extract dinosaur DNA from ancient bone or other source. That is just the very first step in getting anywhere near recreating a Spinosaurus.

Parasaurolophus Puzzle

Any ancient dinosaur DNA would have come in dribs and drabs, just as with Ice Age mammoths, Neanderthals, giant sloths, and sabercats that have yielded genetic tidbits. The trick is identifying those pieces and figuring out where they belonged in an animal’s complete genome. That requires a baseline acquired from a close relative—modern Asian elephants work for mammoths, and our own genome for Neanderthals. But living avian dinosaurs are so far removed from Pachycephalosaurus and kin that their utility in figuring out the arrangement of non-avian dinosaur genomes would be quite limited. And that’s to say nothing of the pseudogenes and non-functional parts of the genome. We haven’t even completely sequenced the genome of our own species—we’re still at about 99 percent of the functional part—so we’re quite far from fully reconstructing an extinct genome.

Jurassic Park recognized this difficulty. That’s why the fictional engineers of the book and film took the boneheaded move of mixing frog DNA with dinosaur genes to create complete animals. And I don’t say “boneheaded” because of the plot twist consequence of “unauthorized mating” among the dinosaurs. By the time Jurassic Park came out, paleontologists were confident that birds were a surviving lineage of dinosaurs—a fact beautifully supported by a slew of fuzzy, fluffy, feathery dinosaurs that started popping out of the fossil record in 1996. Patching Velociraptor with bird DNA would have made a lot more sense, especially given the fictional paleontologist Alan Grant’s virtual obsession with pointing out how bird-like Jurassic Park’s dinosaurs were.

A Raptor By Any Other Name

So a Velociraptor or Tyrannosaurus genome wouldn’t be a feat of resurrection, but reinvention. Even if it were possible to retrieve dinosaur DNA, we’d have to reverse engineer the dinosaur genomes according to our best possible estimates of their anatomy and behavior. More hurdles abound.

Creating a complete DNA profile doesn’t get you anywhere if those genetic cues can’t be translated into a viable embryo that is going to grow to term. Understandably, Michael Crichton and the film adaptations of his work totally glossed over this point, especially since researchers can’t clone birds. It’s easy enough to say “We’ll stick an artificial nucleus inside an ostrich egg and the rest will take care of itself,” but that ignores the essentially biological interactions that actually constitute a living, growing organism. Since birds have outsourced the growth of their offspring outside the body, there may not even be a way to successfully clone a bird, and so there would be no method by which we could bring dinosaurs back even if we had all the requisite raw materials. It’d be like assembling all the materials for a cake and turning on the oven, but having no clue about the cooking chemistry of how to achieve the desired, tasty result.

There will never be a real Jurassic Park. But I’m not especially sad about that. Our favorite dinosaurs may never come back to life in a literal sense, but paleontologists are finding ways to extract ever-more details about dinosaur lives from what remains of the creatures. Science fuels our speculation, allowing dinosaurs to still live in the place where fossil facts and imagination meet. We still have our dinosaur dreams.  

Brian Switek tried really hard not to be a killjoy in this post. So much for that. He enthuses about fossil finds on his National Geographic blog Laelaps, and in his books Written in Stone and My Beloved Brontosaurus, out this month. “Brontosaurus” was slain by science over a century ago, yet the great dinosaur’s ghost is still with us. In My Beloved Brontosaurus, Brian follows the legacy of the cherished sauropod to explore how science has changed dinosaurs over the past thirty years, and has transformed familiar Mesozoic species into creatures more wonderful than anything we could have imagined. He lives in Salt Lake City, Utah, to be closer to the petrified inspirations of his writing.

nextArticle.image_alt|e
iStock
arrow
Animals
Why Tiny 'Hedgehog Highways' Are Popping Up Around London
iStock
iStock

Hedgehogs as pets have gained popularity in recent years, but in many parts of the world, they're still wild animals. That includes London, where close to a million of the creatures roam streets, parks, and gardens, seeking out wood and vegetation to take refuge in. Now, Atlas Obscura reports that animal activists are transforming the city into a more hospitable environment for hedgehogs.

Barnes Hedgehogs, a group founded by Michel Birkenwald in the London neighborhood of Barnes four years ago, is responsible for drilling tiny "hedgehog highways" through walls around London. The passages are just wide enough for the animals to climb through, making it easier for them to travel from one green space to the next.

London's wild hedgehog population has seen a sharp decline in recent decades. Though it's hard to pin down accurate numbers for the elusive animals, surveys have shown that the British population has dwindled by tens of millions since the 1950s. This is due to factors like human development and habitat destruction by farmers who aren't fond of the unattractive shrubs, hedges, and dead wood that hedgehogs use as their homes.

When such environments are left to grow, they can still be hard for hedgehogs to access. Carving hedgehog highways through the stone partitions and wooden fences bordering parks and gardens is one way Barnes Hedgehogs is making life in the big city a little easier for its most prickly residents.

[h/t Atlas Obscura]

nextArticle.image_alt|e
Penn Vet Working Dog Center
arrow
Stones, Bones, and Wrecks
New Program Trains Dogs to Sniff Out Art Smugglers
Penn Vet Working Dog Center
Penn Vet Working Dog Center

Soon, the dogs you see sniffing out contraband at airports may not be searching for drugs or smuggled Spanish ham. They might be looking for stolen treasures.

K-9 Artifact Finders, a new collaboration between New Hampshire-based cultural heritage law firm Red Arch and the University of Pennsylvania, is training dogs to root out stolen antiquities looted from archaeological sites and museums. The dogs would be stopping them at borders before the items can be sold elsewhere on the black market.

The illegal antiquities trade nets more than $3 billion per year around the world, and trafficking hits countries dealing with ongoing conflict, like Syria and Iraq today, particularly hard. By one estimate, around half a million artifacts were stolen from museums and archaeological sites throughout Iraq between 2003 and 2005 alone. (Famously, the craft-supply chain Hobby Lobby was fined $3 million in 2017 for buying thousands of ancient artifacts looted from Iraq.) In Syria, the Islamic State has been known to loot and sell ancient artifacts including statues, jewelry, and art to fund its operations.

But the problem spans across the world. Between 2007 and 2016, U.S. Customs and Border Control discovered more than 7800 cultural artifacts in the U.S. looted from 30 different countries.

A yellow Lab sniffs a metal cage designed to train dogs on scent detection.
Penn Vet Working Dog Center

K-9 Artifact Finders is the brainchild of Rick St. Hilaire, the executive director of Red Arch. His non-profit firm researches cultural heritage property law and preservation policy, including studying archaeological site looting and antiquities trafficking. Back in 2015, St. Hilaire was reading an article about a working dog trained to sniff out electronics that was able to find USB drives, SD cards, and other data storage devices. He wondered, if dogs could be trained to identify the scents of inorganic materials that make up electronics, could they be trained to sniff out ancient pottery?

To find out, St. Hilaire tells Mental Floss, he contacted the Penn Vet Working Dog Center, a research and training center for detection dogs. In December 2017, Red Arch, the Working Dog Center, and the Penn Museum (which is providing the artifacts to train the dogs) launched K-9 Artifact Finders, and in late January 2018, the five dogs selected for the project began their training, starting with learning the distinct smell of ancient pottery.

“Our theory is, it is a porous material that’s going to have a lot more odor than, say, a metal,” says Cindy Otto, the executive director of the Penn Vet Working Dog Center and the project’s principal investigator.

As you might imagine, museum curators may not be keen on exposing fragile ancient materials to four Labrador retrievers and a German shepherd, and the Working Dog Center didn’t want to take any risks with the Penn Museum’s priceless artifacts. So instead of letting the dogs have free rein to sniff the materials themselves, the project is using cotton balls. The researchers seal the artifacts (broken shards of Syrian pottery) in airtight bags with a cotton ball for 72 hours, then ask the dogs to find the cotton balls in the lab. They’re being trained to disregard the smell of the cotton ball itself, the smell of the bag it was stored in, and ideally, the smell of modern-day pottery, eventually being able to zero in on the smell that distinguishes ancient pottery specifically.

A dog looks out over the metal "pinhweel" training mechanism.
Penn Vet Working Dog Center

“The dogs are responding well,” Otto tells Mental Floss, explaining that the training program is at the stage of "exposing them to the odor and having them recognize it.”

The dogs involved in the project were chosen for their calm-but-curious demeanors and sensitive noses (one also works as a drug-detection dog when she’s not training on pottery). They had to be motivated enough to want to hunt down the cotton balls, but not aggressive or easily distracted.

Right now, the dogs train three days a week, and will continue to work on their pottery-detection skills for the first stage of the project, which the researchers expect will last for the next nine months. Depending on how the first phase of the training goes, the researchers hope to be able to then take the dogs out into the field to see if they can find the odor of ancient pottery in real-life situations, like in suitcases, rather than in a laboratory setting. Eventually, they also hope to train the dogs on other types of objects, and perhaps even pinpoint the chemical signatures that make artifacts smell distinct.

Pottery-sniffing dogs won’t be showing up at airport customs or on shipping docks soon, but one day, they could be as common as drug-sniffing canines. If dogs can detect low blood sugar or find a tiny USB drive hidden in a house, surely they can figure out if you’re smuggling a sculpture made thousands of years ago in your suitcase.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios