CLOSE
Wikimedia Commons
Wikimedia Commons

Why Do Diet Coke and Mentos React?

Wikimedia Commons
Wikimedia Commons

Combine Diet Coke and Mentos, and the result is explosive—Diet Coke shoots out of the bottle like a miniature, sticky Old Faithful. The reaction is so intense, you can make a rocket propelled by the resulting geyser. But what's the science behind this reaction?

In June 2008, Dr. Tonya Coffey of Appalachian State University and her physics students published a paper on the phenomenon in the American Journal of Physics. They were inspired by a 2006 MythBusters episode that, according to the paper, "did a wonderful job of identifying the basic ingredients in this reaction ... [but] did not sufficiently explain why those ingredients affect the explosion, nor did they provide direct proof of the roughness of the Mentos—a tall order for an hour-long television program." Coffey and her students decided to dig deeper.

It's All About Texture

Coffey and company discovered that the ingredients in the Mentos and Diet Coke and, more importantly, the structure of the Mentos, allow carbon dioxide bubbles to form extremely rapidly. When this happens fast enough, you get a nice Diet Coke fountain. (It’s not just Diet Coke and Mentos that react; other carbonated beverages will also readily respond to the addition of Mentos.)

Each Mentos candy has thousands of small pores on its surface which disrupt the polar attractions between water molecules, creating thousands of ideal nucleation sites for the gas molecules to congregate. In non-science speak, this porous surface creates a lot of bubble growth sites, allowing the carbon dioxide bubbles to rapidly form on the surface of the Mentos. (If you use a smooth surfaced Mentos candy, you won’t get nearly same the reaction.) The buoyancy of the bubbles and their growth will eventually cause the bubbles to leave the nucleation site and rise to the surface of the soda. Bubbles will continue to form on the porous surface and the process will repeat, creating a nice, foamy geyser.

In addition to that, the gum arabic and gelatin ingredients of the Mentos, combined with the potassium benzoate, sugar or (potentially) aspartame in diet sodas, also help in this process. In these cases, the ingredients end up lowering the surface tension of the liquid, allowing for even more rapid bubble growth on the porous surface of the Mentos—higher surface tension would make it a more difficult environment for bubbles to form. (Compounds like gum arabic that lower surface tension are called “surfactants”).

Diet sodas produce a bigger reaction than non-diet sodas because aspartame lowers the surface tension of the liquid much more than sugar or corn syrup will. You can also increase the effect by adding more surfactants to the soda when you add the Mentos, like adding a mixture of dishwasher soap and water.

Size Matters

Another factor that contributes to the size of the geyser is how rapidly the object causing the foaming sinks in the soda. The faster it sinks, the faster the reaction can happen, and a faster reaction creates a bigger geyser; a slower reaction may release the same amount of foam overall, but will also create a much smaller geyser. This is another reason Mentos works so much better than other similar confectioneries: The candies are fairly dense objects and tend to sink rapidly in the soda. If you crush the Mentos, so it doesn’t sink much at all, you won’t get a very dramatic reaction.

The temperature of the soda also factors into geyser size. Gases are less soluble in liquids with a higher temperature, so the warmer your soda is, the bigger your Mentos-induced geyser will be. This is because the gases want to escape the liquid, so when you drop the Mentos in, the reaction happens faster.

What Doesn't Work

While caffeine is often cited as something that will increase the explosive reaction with the soda, this is not actually the case, at least not given the relatively small amount of caffeine found in the typical 2-liter bottle of soda generally used for these sorts of Diet Coke and Mentos reactions.

You’ll also sometimes read that the acidity of the soda is a major factor in the resulting geyser. This is not the case either. In fact, the level of acidity in the Coke before and after the Mentos geyser does not change, negating the possibility of an acid-based reaction—though you can make such an acid-based reaction using baking soda.

Daven Hiskey runs the wildly popular interesting fact website Today I Found Out. To subscribe to his “Daily Knowledge” newsletter, click here.

nextArticle.image_alt|e
Chloe Effron / iStock
arrow
Big Questions
Why Do Cats Sleep So Much?
Chloe Effron / iStock
Chloe Effron / iStock

Cats can sleep 16 to 20 hours a day. It’s not always deep sleep. Cats spend a lot of time taking short “cat naps” that build their energy, yet keep them alert enough to jump up the moment they sense danger or excitement. They don't sleep a lot because they’re lazy or bored. Cats sleep so that they’re ready to hunt.

Their genes (geenz) tell them to. Genes are the tiny instructions inside the cells of all living things that make a species look and act certain ways. These instructions get passed down from parents to kids. In the case of cats, their genes tell them to sleep a lot, especially during the day. 

A long time ago, cats weren’t domesticated (Doh-MESS-tih-cay-ted). That means they were wild and didn't live with humans. Cats had to hunt to survive, and they needed a lot of energy for that. Just like lions, tigers, and other wild cats, domesticated cats sleep more during the day so they’ll be ready to hunt at night, especially around sunrise and sunset. Of course, most house cats no longer have to hunt at all. But just in case they do, their genes tell them to nap often so they’ll be ready.

Cats can sleep in some pretty strange places, as you can see in this video

 

nextArticle.image_alt|e
iStock
arrow
Big Questions
What's the Difference Between a Church, a Cathedral, and a Basilica?
iStock
iStock

What is the difference between a church, a cathedral, and a basilica?

Mills Baker:

A church is a "house of worship," a building in which Christians gather to perform the rituals of their religion and interact with one another and hold religious functions and so on. They can be very plain, very simple.

A cathedral is a church which is also the "seat," in the bureaucratic sense more than the literal sense, of a bishop (or, in some denominations, another comparably high-ranking ecclesiastical figure). You therefore ordinarily see just one cathedral per denomination per city. Because bishops are responsible for an area—in Catholicism a diocese—a cathedral can also be thought of as the church associated with the administration of an area.

In common usage, people call really big churches cathedrals pretty often, but this is imprecise and technically mistaken.

A basilica was originally a Roman building featuring certain architectural elements that supported its use as a public, open facility for business, trading, etc. These typically—but not always—included colonnades, naves, and aisles, not unlike a modern pedestrian mall.

St. Peter's Basilica in Vatican City
St. Peter's Basilica in Vatican City
iStock

When some churches were built with similar features in the time of early Christianity, they were called basilicas. Later, in Catholicism, the term acquired a new meaning: the pope designates some churches basilicas for a variety of reasons, and they become important sites:

The papal or major basilicas outrank in precedence all other churches. Other rankings put the cathedral (or co-cathedral) of a bishop ahead of all other churches in the same diocese, even if they have the title of minor basilica. If the cathedral is that of a suffragan diocese, it yields precedence to the cathedral of the metropolitan. The cathedral of a primate is considered to rank higher than that of other metropolitan(s) in his circonscription (usually a present or historical state). Other classifications of churches include collegiate churches, which may or may not also be minor basilicas.

So basilicas as Christian buildings are mainly a Catholic phenomenon. And indeed, the world's most famous basilica is of course St. Peter's in Rome, designed in part by Michelangelo, its plaza and baldacchino by Bernini, its balcony where crowds see their pope, etc.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios