CLOSE
Getty Images
Getty Images

Gorilla Expressions Could Point to the Origins of Human Laughter

Getty Images
Getty Images


Next time you smile politely at a stranger, think of a gorilla baring his big pointy fangs while looking like he's just heard the best joke of his life. The grin doesn't mean what you might think—it's actually the great ape's equivalent of politely smiling.

Researchers have long believed that gorillas use facial cues to communicate with one another the same way humans do, but they have only recently started to uncover the meaning of the expressions. Their two main facial expressions are baring teeth and opening the mouth to smile without showing any teeth.

While it runs counter to what you might expect, the bared teeth expression is a sign of appeasement or submission. Gorillas use the open mouth, no teeth smile during playtime to show that they have no intention of biting. (Scientists call this the "play face.") "[During play, gorillas] open their mouths and cover their teeth as if to say, 'I could bite you but I'm not going to,'" researcher Bridget Waller told the BBC.

Researchers also discovered that the Western lowland gorilla has one extra facial expression that seems to combine the other two. When these gorillas are having quite a bit of fun during playtime, they will grin and bare only their top teeth. When this happens, playtime tends to last a lot longer than it would if they only used their toothless smile to show their intentions.

Researchers believe these findings could help us better understand the evolution of human facial expressions—Waller believes the play face, for example, is a foundation of human laughter—which tend to be hard-programmed into our DNA no matter how we were raised.

nextArticle.image_alt|e
iStock
arrow
science
Why Can Parrots Talk and Other Birds Can't?
iStock
iStock

If you've ever seen a pirate movie (or had the privilege of listening to this avian-fronted metal band), you're aware that parrots have the gift of human-sounding gab. Their brains—not their beaks—might be behind the birds' ability to produce mock-human voices, the Sci Show's latest video explains below.

While parrots do have articulate tongues, they also appear to be hardwired to mimic other species, and to create new vocalizations. The only other birds that are capable of vocal learning are hummingbirds and songbirds. While examining the brains of these avians, researchers noted that their brains contain clusters of neurons, which they've dubbed song nuclei. Since other birds don't possess song nuclei, they think that these structures probably play a key role in vocal learning.

Parrots might be better at mimicry than hummingbirds and songbirds thanks to a variation in these neurons: a special shell layer that surrounds each one. Birds with larger shell regions appear to be better at imitating other creatures, although it's still unclear why.

Learn more about parrot speech below (after you're done jamming out to Hatebeak).

nextArticle.image_alt|e
iStock
arrow
science
Prehistoric Ticks Once Drank Dinosaur Blood, Fossil Evidence Shows
iStock
iStock

Ticks plagued the dinosaurs, too, as evidenced by a 99-million-year old parasite preserved inside a hunk of ancient amber. Entomologists who examined the Cretaceous period fossil noticed that the tiny arachnid was latched to a dinosaur feather—the first evidence that the bloodsuckers dined on dinos, according to The New York Times. These findings were recently published in the journal Nature Communications.

Ticks are one of the most common blood-feeding parasites. But experts didn’t know what they ate in prehistoric times, as parasites and their hosts are rarely found together in the fossil record. Scientists assumed they chowed down on early amphibians, reptiles, and mammals, according to NPR. They didn’t have hard evidence until study co-author David Grimaldi, an entomologist at the American Museum of History, and his colleagues spotted the tick while perusing a private collection of Myanmar amber.

A 99-million-year-old tick encased in amber, grasping a dinosaur feather.
Cornupalpatum burmanicum hard tick entangled in a feather. a Photograph of the Burmese amber piece (Bu JZC-F18) showing a semicomplete pennaceous feather. Scale bar, 5 mm. b Detail of the nymphal tick in dorsal view and barbs (inset in a). Scale bar, 1 mm. c Detail of the tick’s capitulum (mouthparts), showing palpi and hypostome with teeth (arrow). Scale bar, 0.1 mm. d Detail of a barb. Scale bar, 0.2 mm. e Drawing of the tick in dorsal view indicating the point of entanglement. Scale bar, 0.2 mm. f Detached barbule pennulum showing hooklets on one of its sides (arrow in a indicates its location but in the opposite side of the amber piece). Scale bar, 0.2 mm
Peñalver et al., Nature Communications

The tick is a nymph, meaning it was in the second stage of its short three-stage life cycle when it died. The dinosaur it fed on was a “nanoraptor,” or a tiny dino that was roughly the size of a hummingbird, Grimaldi told The Times. These creatures lived in tree nests, and sometimes met a sticky end after tumbling from their perches into hunks of gooey resin. But just because the nanoraptor lived in a nest didn’t mean it was a bird: Molecular dating pinpointed the specimen as being at least 25 million years older than modern-day avians.

In addition to ticks, dinosaurs likely also had to deal with another nest pest: skin beetles. Grimaldi’s team located several additional preserved ticks, and two were covered in the insect’s fine hairs. Skin beetles—which are still around today—are scavengers that live in aerial bird homes and consume molted feathers.

“These findings shed light on early tick evolution and ecology, and provide insights into the parasitic relationship between ticks and ancient relatives of birds, which persists today for modern birds,” researchers concluded in a news release.

[h/t The New York Times]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios