CLOSE
Hiroshi Kawahara, AFP/Getty Images
Hiroshi Kawahara, AFP/Getty Images

How Do Tsunamis Work?

Hiroshi Kawahara, AFP/Getty Images
Hiroshi Kawahara, AFP/Getty Images

Tsunamis have been wreaking havoc on the world's coastlines for centuries. Since 1850 alone, tsunamis have been responsible for taking 420,000 lives and causing billions of dollars in damage. How do these monster waves work?

DON'T CALL IT A TIDAL WAVE

Tsunamis have nothing to do with the wind-generated waves we're used to seeing, or the tides—they’re a set of ocean waves caused by the rapid displacement of water. Most commonly, this happens when large underwater earthquakes push up the seabed; the larger and shallower the earthquake, the bigger the potential tsunami. Once generated, the waves split: A distant tsunami travels out into the open ocean, while a local tsunami travels toward the nearby coast. The speed of the waves depends on the depth of the water, but typically, waves roll across the ocean at speeds between 400 and 500 mph.

It’s not only the method of generation that differentiates tsunamis from wind-generated waves. On average, wind waves have a crest-to-crest wavelength—the distance over which the wave’s shape repeats—of approximately 330 feet and a height of 6.6 feet. A deep ocean tsunami will have a wavelength of 120 miles and amplitude (the distance from the peak of the wave to its trough) of only about 3.3 feet. This is why tsunamis are difficult to detect in the open ocean.

As a tsunami approaches the shore, the wave compresses: Its speed and wavelength decrease while its amplitude grows enormously. Most waves arrive on-shore not as a huge wave but as a fast-moving tidal bore that floods the shoreline. However, if the trough of the wave arrives before the ridge, or peak, the sea will recede from the shore, exposing normally submerged areas, as the trough builds into a ridge. This can serve as a brief warning that a tsunami is about to occur.

Other causes of tsunamis include underwater landslides and explosions. Another type of wave, called a mega-tsunami, is caused by above-water landslides or glacier calving. The largest recorded mega-tsunami struck in Alaska’s Lituya Bay in 1958; an earthquake triggered a landslide that displaced so much water that the waves created were 470 feet taller than the Empire State Building.

MONITORING WAVES

Like earthquakes, tsunamis can’t be predicted—but that doesn’t mean scientists aren’t trying to figure out ways to warn people before the flooding starts. Using a system of buoys called DART—Deep-Ocean Assessment and Reporting of Tsunamis—researchers can monitor ocean wave height in real time. When an earthquake occurs that scientists believe is likely to trigger a tsunami, these strategically placed buoys send reports on sea level change back to tsunami warning centers. There, scientists use that data to create a model of the potential tsunami’s effects and decide whether to issue a warning or make populations evacuate.

In the 2012 action film Battleship, the DART system took a star turn. Director Peter Berg used it as a method of creating the game’s iconic grid. (The Hollywood version of DART is much more robust than the real-world version, which has just 39 buoys.)

LOCATION, LOCATION, LOCATION

Tsunamis are mostly generated by quakes that occur in subduction zones: areas where denser oceanic plates slide underneath lighter continental plates, causing vertical displacement of the seafloor and water column above it. The majority of the world's subduction zones are in the Pacific Ocean bordering Oceania, Asia, North America, and South America. This highly unsettled loop is nicknamed the "ring of fire" for its concentration of geologic upheavals.

Because the Atlantic Ocean has far fewer subduction zones than the Pacific, Atlantic tsunamis are rare, but possible. The most likely cause would be an earthquake creating a submarine landslide that would displace a huge volume of water and trigger the wave.

In 2001, geophysicists Steven N. Ward and Simon Day suggested that an Atlantic mega-tsunami could be generated by a massive landslide off La Palma, the most active volcano in the Canary Islands archipelago. The theory was based on modeling a number of worst-case scenarios, the authors said. Others have argued that the danger is overblown.

nextArticle.image_alt|e
Mark Ralston/AFP/Getty Images
arrow
Big Questions
What Causes Sinkholes?
Mark Ralston/AFP/Getty Images
Mark Ralston/AFP/Getty Images

This week, a sinkhole opened up on the White House lawn—likely the result of excess rainfall on the "legitimate swamp" surrounding the storied building, a geologist told The New York Times. While the event had some suggesting we call for Buffy's help, sinkholes are pretty common. In the past few days alone, cavernous maws in the earth have appeared in Maryland, North Carolina, Tennessee, and of course Florida, home to more sinkholes than any other state.

Sinkholes have gulped down suburban homes, cars, and entire fields in the past. How does the ground just open up like that?

Sinkholes are a simple matter of cause and effect. Urban sinkholes may be directly traced to underground water main breaks or collapsed sewer pipelines, into which city sidewalks crumple in the absence of any structural support. In more rural areas, such catastrophes might be attributed to abandoned mine shafts or salt caverns that can't take the weight anymore. These types of sinkholes are heavily influenced by human action, but most sinkholes are unpredictable, inevitable natural occurrences.

Florida is so prone to sinkholes because it has the misfortune of being built upon a foundation of limestone—solid rock, but the kind that is easily dissolved by acidic rain or groundwater. The karst process, in which the mildly acidic water wears away at fractures in the limestone, leaves empty space where there used to be stone, and even the residue is washed away. Any loose soil, grass, or—for example—luxury condominiums perched atop the hole in the ground aren't left with much support. Just as a house built on a weak foundation is more likely to collapse, the same is true of the ground itself. Gravity eventually takes its toll, aided by natural erosion, and so the hole begins to sink.

About 10 percent of the world's landscape is composed of karst regions. Despite being common, sinkholes' unforeseeable nature serves as proof that the ground beneath our feet may not be as solid as we think.

A version of this story originally ran in 2014.

nextArticle.image_alt|e
iStock
arrow
science
DNA Analysis of Loch Ness Could Reveal the Lake's Hidden Creatures
iStock
iStock

Stakeouts, sonar studies, and a 24-hour video feed have all been set up in an effort to confirm the existence of the legendary Loch Ness Monster. Now, the Associated Press reports that an international team of scientists will use DNA analysis to learn what's really hiding in the depths of Scotland's most mysterious landmark.

The team, led by Neil Gemmell, who researches evolutionary genetics at the University of Otago in New Zealand, will collect 300 water samples from various locations and depths around the lake. The waters are filled with microscopic DNA fragments animals leave behind as they swim, mate, eat, poop, and die in the waters, and if Nessie is a resident, she's sure to leave bits of herself floating around as well.

After extracting the DNA from the organic material found in the water samples, the scientists plan to sequence it. The results will then be compared to the DNA profiles of known species. If there's evidence of an animal that's not normally found in the lake, or an entirely new species, the researchers will hopefully spot it.

Gemmell is a Nessie skeptic, and he says the point of the project isn't necessarily to discover new species. Rather, he wants to create a genetic profile of the lake while generating some buzz around the science behind it.

If the study goes according to plan, the database of Loch Ness's inhabitants should be complete by 2019. And though the results likely won't include a long-extinct plesiosaur, they may offer insights about other invasive species that now call the lake home.

[h/t AP]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios