CLOSE

A Very Special Message from Space Station Alpha

In the timelapse video "Further Up Yonder," we hear snippets of speech from the crew of the International Space Station, also known as Space Station Alpha. There are three crew up there at the moment, and as you hear in the video -- they are "the most forward-deployed citizens of the planet at this moment." While doing science experiments, they also shoot stunning photography, and thanks to NASA, that photography is available for free online. This video was made by film student Giacomo Sardelli, who wrote:

As a filmmaking student, this was my first attempt to craft a timelapse video. It has been a time consuming process, but it turned out as one of my most satisfying projects.

I focused my workflow on colours and harmony of movements, syncing every frame with the music and the voices of the astronauts. Every picture has been post processed individually before being imported in the NLE software, as I tried to take the most out of every image in terms of colours, contrast and neatiness.

Pictures were downloaded from the Image Science & Analysis Laboratory, NASA Johnson Space Center and edited with Photoshop CS6. Even if they were Hi-res images shot with Nikon D3S cameras, a lot of noise removal and color correction was needed, especially for those shots at ISO 3200, which was the highest ISO speed limit I've allowed myself to use, exception made for the last sequence of the spinning world, which comes from a sequenze of shots taken at ISO 12800. Daytime shots were taken at ISO 200. I've used Topaz Denoise 5 for noise removal, as it is very powerful and accurate when dealing with shadows and blacks.

Editing was made with Adobe Premiere CS6, with a 2K workflow, which allowed me to scale, rotate and pan image sequences whose native resolution is 4K. The video was downscaled to 1280x720 resolution for Vimeo. The original 2K version is available for download on my blog.

In my day, film students used 8mm film cameras without sound, cut by hand on flatbed editing bays. Also, in my day, we didn't even have an International Space Station (we had to make do with Skylab) -- so I guess times have changed. Enjoy.

Further Up Yonder from Giacomo Sardelli on Vimeo.

Note: if you're looking for subtitles, they're out there.

For more ISS goodness, check out: Starry Nights, as Seen from the International Space Station; Yet More Brilliant Space Station Video; Stunning Time Lapse of Earth Seen from Space Station; 11 Eye-Opening NASA Wakeup Calls; and Don Pettit's awesome Yo-Yos in Space!

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Opening Ceremony
fun
arrow
These $425 Jeans Can Turn Into Jorts
May 19, 2017
Original image
Opening Ceremony

Modular clothing used to consist of something simple, like a reversible jacket. Today, it’s a $425 pair of detachable jeans.

Apparel retailer Opening Ceremony recently debuted a pair of “2 in 1 Y/Project” trousers that look fairly peculiar. The legs are held to the crotch by a pair of loops, creating a disjointed C-3PO effect. Undo the loops and you can now remove the legs entirely, leaving a pair of jean shorts in their wake. The result goes from this:

501069-OpeningCeremony2.jpg

Opening Ceremony

To this:

501069-OpeningCeremony3.jpg

Opening Ceremony

The company also offers a slightly different cut with button tabs in black for $460. If these aren’t audacious enough for you, the Y/Project line includes jumpsuits with removable legs and garter-equipped jeans.

[h/t Mashable]

SECTIONS
BIG QUESTIONS
BIG QUESTIONS
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES