Original image

How & Why Do Leaves Change Color?

Original image

Despite their astonishing record of losses when dealing with lumberjacks and beavers, trees are pretty tough customers. Their trunks, branches, roots and twigs are all more than capable of enduring a winter's worth of freezing temperatures, snow, sleet and hail. Their leaves, though? Eh, not so tough. The broad, thin leaves of a broadleaf tree (like a maple, an oak, a birch, or a poplar) are an Achilles' heel when winter comes, and are vulnerable to freezing and damage from the elements. In order to survive, the trees either have to somehow protect the delicate leaves or shed them.

Evergreen trees—your pines, spruces, firs, etc.— went the protection route. Their leaves, or needles, are covered in a waxy coating to resist freezing, allowing them to live for years or even decades before falling off and being replaced. The leaves of deciduous trees, on the other hand, are cast off with the arrival of winter. The chemical processes that prepare them for their send-off also treat us to the season's vibrant colors.

Color Coding

Green: The green color of leaves throughout spring and summer comes from chlorophyll, a pigment vital to photosynthesis.

As we get closer to autumn and some parts of the planet get fewer hours of sunlight, trees respond by stopping the food-making photosynthesis process and slowing the production of chlorophyll until, eventually, they stop producing it altogether and the green color of the leaf fades

leaves-mapleYellow and Orange: Along with chlorophyll, there are yellow and orange pigments, carotene and xanthophyll, inside some trees' leaves. For most of the year, these pigments are masked by chlorophyll, but as the chlorophyll breaks down and the green color dissipates, the yellow to orange colors become visible.

Red: Another class of pigment that occurs in leaves is the anthocyanins. Anthocyanins, unlike carotene and xanthophyll, are not present in leaves year-round. It isn't until the chlorophyll begins breaking down that the plant begins to synthesize anthocyanin. Why do trees begin producing a different pigment in leaves they're getting ready to lose? The prevailing theory is that anthocyanins protect leaves from sun damage, lower their freezing point, allow them to remain on the tree longer, and buy the tree more time to recover nutrients from its leaves. The colors that anthocyanins produce are dependent on the pH of the leaves' cell sap. Very acidic sap results in a bright red color, while less acidic sap leads to a purplish red.

Brown: The humdrum color is the result of waste products trapped in the leaves.

That covers the basics of how each of the colors can be produced. But which color we ultimately see depends on several factors, such as"¦

Species: Certain colors are characteristic of particular tree species and can be used to help identify the type of tree you're looking at. Oak leaves turn red, brown, or russet, hickories turn golden bronze, poplars turn golden yellow, dogwoods turn a purplish red, beeches turn a light yellow/tan, birches turn bright yellow, sugar maples turn orange-red, black maples turn a glowing yellow, and red maples turn scarlet. Some trees, notably elms, don't go through much color change at all; there's just a dull brown and then the leaf is gone with the wind.

Weather: The temperature and moisture levels a tree is exposed to before and during the time its leaves' chlorophyll breaks down can affect color. Sunny days and cool nights favor anthocyanin production and bright red leaves. On cloudy days, anthocyanin isn't as chemically active and allows the orange or yellow pigments to take center stage.

Geography: Autumn leaves in Europe tend to be mostly yellow, but the US and East Asia seem to favor red leaves. Scientists from Israel and Finland recently put forth a theory about this color difference in the journal New Phytologist1. The scientists think that some 35 million years ago—amid a series of ice ages—many tree species evolved to become deciduous and produced red leaves to ward off insects. In North America and Asia, north-to-south mountain chains enabled the north and south spread of plants and animals corresponding with the advance and retreat of ice. In Europe, east-to-west mountain ranges like the Alps trapped plant and animal life. Many tree species (and the insects that depended on them) died out when the ice advanced. At the end of repeated ice ages, say the scientists, the tree species that survived didn't need red leaves to cope with the insects that were left, so they stopped producing red pigments and stuck with yellow.

The Dead Leaves and the Dirty Ground


While all this color changing and autumn magic is going on, the tree is preparing to cast off its leaves. Around the same time that chlorophyll production slows down, the veins that transport nutrients and water to the leaf from the rest of the tree get closed off. A layer of cells at the base of the leaf stem, called the separation layer, swells and forms a cork-like material, gradually severing the tissue that connects the leaf to the branch. The leaf falls off and the tree seals the cut—so when the leaf is blown off or falls from its own weight, a leaf scar is left behind.

1Lev-Yadun, S and Holopainen, J. (2009). Why red-dominated autumn leaves in America and yellow-dominated autumn leaves in Northern Europe? New Phytologist Volume 183(3): 506-512. doi:10.1111/j.1469-8137.2009.02904.x
Special thanks to Damian Dockery, who provided the foliage photos. See more of his work at

Original image
Big Questions
How Does Autopilot Work on an Airplane?
Original image

How does autopilot work on an airplane?

Joe Shelton:

David Micklewhyte’s answer is a good one. There are essentially a few types of features that different autopilots have. Some autopilots only have some of these features, while the more powerful autopilots do it all.

  • Heading Hold: There’s a small indicator that the pilot can set on the desired heading and the airplane will fly that heading. This feature doesn’t take the need for wind correction to desired routing into account; that’s left to the pilot.
  • Heading and Navigation: In addition to holding a heading, this version will take an electronic navigation input (e.g. GPS or VOR) and will follow (fly) that navigation reference. It’s sort of like an automated car in that it follows the navigator’s input and the pilot monitors.
  • Altitude Hold: Again, in addition to the above, a desired altitude can be set and the aircraft will fly at that altitude. Some autopilots have the capability for the pilot to select a desired altitude and a climb or descent rate and the aircraft will automatically climb or descend to that altitude and then hold the altitude.
  • Instrument Approaches: Autopilots with this capability will fly preprogrammed instrument approaches to the point where the pilot either takes control and lands or has the autopilot execute a missed approach.

The autopilot is a powerful computer that takes input from either the pilot or a navigation device and essentially does what it is told to do. GPS navigators, for example, can have a full flight plan entered from departure to destination, and the autopilot will follow the navigator’s guidance.

These are the majority of the controls on the autopilot installed in my airplane:

HDG Knob = Heading knob (Used to set the desired heading)

AP = Autopilot (Pressing this turns the autopilot on)

FD = Flight Director (A form of navigational display that the pilot uses)

HDG = Heading (Tells the autopilot to fly the heading set by the Heading Knob)

NAV = Tells the autopilot to follow the input from the selected navigator

APR = Tells the autopilot to fly the chosen approach

ALT = Tells the autopilot to manage the altitude, controlled by the following:

VS = Vertical Speed (Tells the autopilot to climb or descend at the chosen rate)

Nose UP / Nose DN = Sets the climb/descent rate in feet per minute

FLC = Flight Level Change (An easy manual way to set the autopilot)

ALT Knob = Used to enter the desired altitude

This post originally appeared on Quora. Click here to view.

Original image
Big Questions
What's the Difference Between Vanilla and French Vanilla Ice Cream?
Original image

While you’re browsing the ice cream aisle, you may find yourself wondering, “What’s so French about French vanilla?” The name may sound a little fancier than just plain ol’ “vanilla,” but it has nothing to do with the origin of the vanilla itself. (Vanilla is a tropical plant that grows near the equator.)

The difference comes down to eggs, as The Kitchn explains. You may have already noticed that French vanilla ice cream tends to have a slightly yellow coloring, while plain vanilla ice cream is more white. That’s because the base of French vanilla ice cream has egg yolks added to it.

The eggs give French vanilla ice cream both a smoother consistency and that subtle yellow color. The taste is a little richer and a little more complex than a regular vanilla, which is made with just milk and cream and is sometimes called “Philadelphia-style vanilla” ice cream.

In an interview with NPR’s All Things Considered in 2010—when Baskin-Robbins decided to eliminate French Vanilla from its ice cream lineup—ice cream industry consultant Bruce Tharp noted that French vanilla ice cream may date back to at least colonial times, when Thomas Jefferson and George Washington both used ice cream recipes that included egg yolks.

Jefferson likely acquired his taste for ice cream during the time he spent in France, and served it to his White House guests several times. His family’s ice cream recipe—which calls for six egg yolks per quart of cream—seems to have originated with his French butler.

But everyone already knew to trust the French with their dairy products, right?

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at


More from mental floss studios