CLOSE
Original image

Discovering Oxygen: A Brief History

Original image

Because there are three different dead guys who regularly vie for credit for discovering oxygen, we’ve staged a little friendly competition to establish which of these great men deserves the title of the O-master. In evaluating the contenders, we’ll look at when they isolated oxygen and how their experiments furthered our understanding of the element. In addition to bragging rights, the winner takes home one zillion liters of oxygen.

Contender 1: Carl Wilhelm Scheele

Nationality: Swedish
Occupation: Apothecary

Biggest Accomplishment: In 1772, he was the first person to figure out a way – actually a couple of ways - to isolate oxygen. He discovered that mercuric oxide, silver carbonate, magnesium nitrate, and potassium nitrate all gave off the same gas when heated. Scheele dubbed the mystery element “fire air” because he noticed that it produced sparks when it came into contact with charcoal dust.

Other Biggest Accomplishment: Discovered chlorine

Biggest Shortcoming:

Bad timing. Scheele didn’t publish his discovery until 1777, in a treatise called Chemical Observations and Experiments on Air and Fire. By that time, Joseph Priestley had already written a paper describing his findings and published the comprehensive Experiments and Observations on Air. Lavoisier had also successfully isolated the gas. Because Scheele waited so long to get the word out, his groundbreaking experiment was often overlooked by other scientists, earning him the nickname “Hard Luck Scheele.”

Contender 2: Joseph Priestley

Nationality: British

Occupation: Radical Unitarian Minister

Biggest accomplishment: In 1771, Priestley noticed that a mouse in a sealed jar would eventually collapse. He then tried slipping a sprig of mint inside and realized the plant magically revived his subject. Realizing that plants did something to freshen up the air, he wrote to his friend Benjamin Franklin, saying he hoped his discovery would stop people from cutting down so many trees.

Priestley didn’t actually isolate this mystery gas until August 1, 1774, when he heated some mercuric oxide powder and discovered that it gave off a gas that could reignite a glowing ember. He collected large amounts of the gas and tried breathing it himself. After a few puffs, Priestley was hooked. He declared, “My breast felt peculiarly light and easy for some time afterward.”

Other Biggest Accomplishment: Invented seltzer water

Biggest Shortcoming: Priestley just wouldn’t let go of phlogiston theory – a crackpot hypothesis that argued combustion was fueled by an invisible substance called phlogiston. Priestley believed that his mystery gas supported combustion because it was pure and could absorb phlogiston released by burning substances. That’s why he was pushing to name oxygen “dephlogisticated air.”

Contender 3: Antoine Laurent Lavoisier

Nationality: French

Occupation: Tax farmer/Commissioner of the Royal Gunpowder and Saltpeter Administration

Biggest Accomplishment: Lavoisier debunked phlogiston theory. Up until then, scientists couldn’t explain why tin gained weight when it was burned; if it was releasing phlogiston, it should lose weight. Lavoisier realized that there was no way phlogiston could have a negative mass and set out to prove that combustion was caused by something else. He heated Mercury until calx formed, then he heated the calx until it gave off a clear gas. Lavoisier realized combustion resulted from a chemical reaction with this gas – not some flammable mystery element called phlogiston. He dubbed the gas “oxygen” – a name that referred to its ability to create acids.

Other Biggest Accomplishment: Helped establish this thing called the metric system, which some people supposedly use.

Biggest Shortcoming: Lavoisier might have been the one to name oxygen, and for that, we’re grateful (nobody would be caught dead in a dephlogisticated air bar). However, he was not the first to isolate the gas or recognize its unique properties. His methods weren’t even original. In fact, Lavoisier had been in contact with both Priestley and Scheele and borrowed from their experiments.

And the O-Master Is...

We’re giving this one to Joseph Priestley. Although he gets points for publishing first, his real breakthrough was his realization that plants gave off oxygen. This discovery enabled future scientists to understand cellular respiration and photosynthesis – both of which are absolutely essential to life on Earth. We’re also giving Priestley points for recognizing the commercial potential of oxygen when he anticipated that the pure air could be a hit at parties. Sure enough, over 200 years later, oxygen bars have become a thing!

So next time you take a breath (hopefully soon), think of Joseph Priestley and his iconic experiment, which took place exactly 238 years ago today.

Original image
iStock // Ekaterina Minaeva
arrow
technology
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
iStock
arrow
Live Smarter
Working Nights Could Keep Your Body from Healing
Original image
iStock

The world we know today relies on millions of people getting up at sundown to go put in a shift on the highway, at the factory, or in the hospital. But the human body was not designed for nocturnal living. Scientists writing in the journal Occupational & Environmental Medicine say working nights could even prevent our bodies from healing damaged DNA.

It’s not as though anybody’s arguing that working in the dark and sleeping during the day is good for us. Previous studies have linked night work and rotating shifts to increased risks for heart disease, diabetes, weight gain, and car accidents. In 2007, the World Health Organization declared night work “probably or possibly carcinogenic.”

So while we know that flipping our natural sleep/wake schedule on its head can be harmful, we don’t completely know why. Some scientists, including the authors of the current paper, think hormones have something to do with it. They’ve been exploring the physiological effects of shift work on the body for years.

For one previous study, they measured workers’ levels of 8-OH-dG, which is a chemical byproduct of the DNA repair process. (All day long, we bruise and ding our DNA. At night, it should fix itself.) They found that people who slept at night had higher levels of 8-OH-dG in their urine than day sleepers, which suggests that their bodies were healing more damage.

The researchers wondered if the differing 8-OH-dG levels could be somehow related to the hormone melatonin, which helps regulate our body clocks. They went back to the archived urine from the first study and identified 50 workers whose melatonin levels differed drastically between night-sleeping and day-sleeping days. They then tested those workers’ samples for 8-OH-dG.

The difference between the two sleeping periods was dramatic. During sleep on the day before working a night shift, workers produced only 20 percent as much 8-OH-dG as they did when sleeping at night.

"This likely reflects a reduced capacity to repair oxidative DNA damage due to insufficient levels of melatonin,” the authors write, “and may result in cells harbouring higher levels of DNA damage."

DNA damage is considered one of the most fundamental causes of cancer.

Lead author Parveen Bhatti says it’s possible that taking melatonin supplements could help, but it’s still too soon to tell. This was a very small study, the participants were all white, and the researchers didn't control for lifestyle-related variables like what the workers ate.

“In the meantime,” Bhatti told Mental Floss, “shift workers should remain vigilant about following current health guidelines, such as not smoking, eating a balanced diet and getting plenty of sleep and exercise.”

SECTIONS
BIG QUESTIONS
arrow
BIG QUESTIONS
SECTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES