CLOSE

Discovering Oxygen: A Brief History

Because there are three different dead guys who regularly vie for credit for discovering oxygen, we’ve staged a little friendly competition to establish which of these great men deserves the title of the O-master. In evaluating the contenders, we’ll look at when they isolated oxygen and how their experiments furthered our understanding of the element. In addition to bragging rights, the winner takes home one zillion liters of oxygen.

Contender 1: Carl Wilhelm Scheele

Nationality: Swedish
Occupation: Apothecary

Biggest Accomplishment: In 1772, he was the first person to figure out a way – actually a couple of ways - to isolate oxygen. He discovered that mercuric oxide, silver carbonate, magnesium nitrate, and potassium nitrate all gave off the same gas when heated. Scheele dubbed the mystery element “fire air” because he noticed that it produced sparks when it came into contact with charcoal dust.

Other Biggest Accomplishment: Discovered chlorine

Biggest Shortcoming:

Bad timing. Scheele didn’t publish his discovery until 1777, in a treatise called Chemical Observations and Experiments on Air and Fire. By that time, Joseph Priestley had already written a paper describing his findings and published the comprehensive Experiments and Observations on Air. Lavoisier had also successfully isolated the gas. Because Scheele waited so long to get the word out, his groundbreaking experiment was often overlooked by other scientists, earning him the nickname “Hard Luck Scheele.”

Contender 2: Joseph Priestley

Nationality: British

Occupation: Radical Unitarian Minister

Biggest accomplishment: In 1771, Priestley noticed that a mouse in a sealed jar would eventually collapse. He then tried slipping a sprig of mint inside and realized the plant magically revived his subject. Realizing that plants did something to freshen up the air, he wrote to his friend Benjamin Franklin, saying he hoped his discovery would stop people from cutting down so many trees.

Priestley didn’t actually isolate this mystery gas until August 1, 1774, when he heated some mercuric oxide powder and discovered that it gave off a gas that could reignite a glowing ember. He collected large amounts of the gas and tried breathing it himself. After a few puffs, Priestley was hooked. He declared, “My breast felt peculiarly light and easy for some time afterward.”

Other Biggest Accomplishment: Invented seltzer water

Biggest Shortcoming: Priestley just wouldn’t let go of phlogiston theory – a crackpot hypothesis that argued combustion was fueled by an invisible substance called phlogiston. Priestley believed that his mystery gas supported combustion because it was pure and could absorb phlogiston released by burning substances. That’s why he was pushing to name oxygen “dephlogisticated air.”

Contender 3: Antoine Laurent Lavoisier

Nationality: French

Occupation: Tax farmer/Commissioner of the Royal Gunpowder and Saltpeter Administration

Biggest Accomplishment: Lavoisier debunked phlogiston theory. Up until then, scientists couldn’t explain why tin gained weight when it was burned; if it was releasing phlogiston, it should lose weight. Lavoisier realized that there was no way phlogiston could have a negative mass and set out to prove that combustion was caused by something else. He heated Mercury until calx formed, then he heated the calx until it gave off a clear gas. Lavoisier realized combustion resulted from a chemical reaction with this gas – not some flammable mystery element called phlogiston. He dubbed the gas “oxygen” – a name that referred to its ability to create acids.

Other Biggest Accomplishment: Helped establish this thing called the metric system, which some people supposedly use.

Biggest Shortcoming: Lavoisier might have been the one to name oxygen, and for that, we’re grateful (nobody would be caught dead in a dephlogisticated air bar). However, he was not the first to isolate the gas or recognize its unique properties. His methods weren’t even original. In fact, Lavoisier had been in contact with both Priestley and Scheele and borrowed from their experiments.

And the O-Master Is...

We’re giving this one to Joseph Priestley. Although he gets points for publishing first, his real breakthrough was his realization that plants gave off oxygen. This discovery enabled future scientists to understand cellular respiration and photosynthesis – both of which are absolutely essential to life on Earth. We’re also giving Priestley points for recognizing the commercial potential of oxygen when he anticipated that the pure air could be a hit at parties. Sure enough, over 200 years later, oxygen bars have become a thing!

So next time you take a breath (hopefully soon), think of Joseph Priestley and his iconic experiment, which took place exactly 238 years ago today.

nextArticle.image_alt|e
Department Of Classics, University Of Cincinnati
arrow
Stones, Bones, and Wrecks
Ancient Poop Contains First Evidence of Parasites Described by Hippocrates
Department Of Classics, University Of Cincinnati
Department Of Classics, University Of Cincinnati

The long-held mystery of Hippocrates and the parasitic worms has finally been solved, and it’s all thanks to a few samples of ancient poop.

Researchers don’t know much about the parasites that plagued the Greeks thousands of years ago, and what they do know is largely from the Hippocratic Corpus, the medical texts that the father of medicine and his students put together between the 4th and 3rd centuries BCE. Modern historians have spent years trying to figure out which diseases and parasites Hippocrates and his followers were referring to in their writing, relying solely on their descriptions to guess at what ailments the ancient Greeks might have suffered from. Now, they finally have concrete evidence of the existence of some of the intestinal worms Hippocrates mentioned, Helmins strongyle and Ascaris.

As part of a study in the Journal of Archaeological Science: Reports, an international group of researchers analyzed the ancient remains of feces in 25 prehistoric burials on the Greek island of Kea to determine what parasites the people were carrying when they died. Using microscopes, they looked at the soil (formed by the decomposed poop) found on the pelvic bones of skeletons dating back to the Neolithic, Bronze, and Roman periods.

A roundworm egg under the microscope
A roundworm egg
Elsevier

Around 16 percent of the burials they studied contained evidence of parasites. In these ancient fecal samples, they found the eggs of two different parasitic species. In the soil taken from the skeletons dating back to the Neolithic period, they found whipworm eggs, and in the soil taken from the Bronze Age skeletons, roundworm.

With this information, researchers deduced that what Hippocrates called the Helmins strongyle worm was probably what modern doctors would call roundworm. The Ascaris worm probably referred to two different parasites, they conclude, known today as pinworm (which was not found in this analysis) and whipworm (pictured below).

Whipworm under a microscope
A whipworm egg
Elsevier

Though historians already hypothesized that Hippocrates's patients on Kea had roundworm, the Ascaris finding comes as a particular surprise. Previous research based solely on Hippocrates’s writing rather than physical evidence suggested that what he called Ascaris was probably a pinworm, and another worm he mentioned, Helmins plateia, was probably a tapeworm. But the current research didn’t turn up any evidence of either of those two worms. Instead of pinworm eggs, the researchers found whipworm, another worm that’s similarly small and round. (Pinworms may very well have existed in ancient Greece, the researchers caution, since evidence of their fragile eggs could easily have been lost to time.) The soil analysis has already changed what we know about the intestinal woes of the ancient Greeks of Kea.

More importantly, this study provides the earliest evidence of ancient Greece’s parasitic worm population, proving yet again that ancient poop is one of the world’s most important scientific resources.

nextArticle.image_alt|e
iStock
arrow
science
Arctic Temperatures are Rising So Fast, They're Confusing the Hell Out of Computers
iStock
iStock

This past year was a brutal one for northern Alaska, which saw temperatures that soared above what was normal month after month. But you wouldn't know that by looking at the numbers from the weather station at Utqiaġvik, Alaska. That's because the recent heat was so unusual for the area that computers marked the data as incorrect and failed to report it for the entirety of 2017, leaving a hole in the records of the Climate Monitoring group at the National Centers for Environmental Information (NCEI), according to the Huffington Post.

The weather station in the northernmost tip of Alaska has been measuring temperatures for nearly a century. A computer system there is programed to recognize if the data has been influenced by artificial forces: Perhaps one of the instruments isn't working correctly, or something is making the immediate area unnaturally hot or cold. In these cases, the computer edits out the anomalies so they don't affect the rest of the data.

But climate change has complicated this failsafe. Temperatures have been so abnormally high that the Utqiaġvik station erroneously removed all its data for 2017 and part of 2016. A look at the region's weather history explains why the computers might have sensed a mistake: The average yearly temperature for the era between 2000 and 2017 has gone up by 1.9°F from that of the era between 1979 and 1999. Break it down by month and the numbers are even more alarming: The average temperature increase is 7.8°F for October, 6.9°F for November, and 4.7°F for December.

"In the context of a changing climate, the Arctic is changing more rapidly than the rest of the planet," Deke Arndt, chief of NOAA's Climate Monitoring Branch, wrote for climate.gov. The higher temperatures rise, the faster Arctic sea ice melts. Arctic sea ice acts as a mirror that reflects the Sun's rays back into space, and without that barrier, the sea absorbs more heat from the Sun and speeds up the warming process. “Utqiaġvik, as one of a precious few fairly long-term observing sites in the American Arctic, is often referenced as an embodiment of rapid Arctic change,” Arndt wrote.

As temperatures continue to grow faster than computers are used to, scientists will have to adjust their algorithms in response. The team at NCEI plans to have the Utqiaġvik station ready to record our changing climate once again within the next few months.

[h/t Huffington Post]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios