Original image

How Smartphones Could Keep Psychology From Getting Too WEIRD

Original image

In 2004, I was a lab rat for about 15 minutes. A psychology professor at Juniata College, where I spent my freshman year, was conducting an experiment. I don’t remember what exactly he was studying, but it involved video games. He put up posters around campus and gathered a bunch of volunteers in a campus building basement to frag each other in several rounds of Unreal Tournament. I lost pretty quickly, but did my part. I think I got a game store gift card for my time.

Now ideally, if you want to learn anything useful about human brains and behavior, you try to get a large and diverse group of people to draw your conclusions from. But as Canadian psychologist Joseph Henrich and colleagues revealed in a 2010 paper in Behavioral Brain Sciences, a lot of psych studies are done the same way as the one I participated in.

That is, they test ideas by looking at small and homogeneous groups of volunteers brought to college campuses and research facilities, usually drawing those volunteers from the school’s student body or the local population. (The rest of the guys in my study were, like me, all white male undergrads who liked playing first person shooters.)

WEIRD Science

Henrich’s team looked at hundreds of studies in leading psychology journals, and found that 68 percent of the research subjects came from the United States, and 67 percent of those were undergraduate psychology students. Overall, 96 percent of the subjects came from Western industrialized countries that, together, make up only 12 percent of the world's population. Frequently, studies that claim to reveal something universal about the human brain or our behavior are really just extrapolating results from the same (relatively) small groups.

This kind of study-building method results in the overrepresentation of a population that the authors dub WEIRD: Western, Educated, Industrialized, Rich, and Democratic. Sure, we’re all human. We’re all working with more or less the same software in our skulls. But, the researchers say, culture and environment play a role in shaping how we use that software. There are important differences in the way my brain works versus, say, a rural farmer in China, versus a member of a hunter-gatherer tribe on an island in the South Pacific, when it comes to areas like “visual perception, fairness, cooperation, spatial reasoning, categorization and inferential induction, moral reasoning, reasoning styles, self-concepts and related motivations, and the heritability of IQ.”

“The findings suggest that members of WEIRD societies, including young children, are among the least representative populations one could find for generalizing about humans,” the paper continues. We, the WEIRD ones, are actually  “highly unrepresentative of the species,” but form the basis for so much of what we think we know about ourselves.

Henrich and his colleagues call for their fellow scientists to collect comparative data across culturally and geographically diverse populations before drawing conclusions about our species as a whole. But how do you do that? With shrinking funding and small staffs, it’s not always feasible, to conduct a study in your own lab and then go elsewhere to get a different sample, or even to try to attract a diverse sample to you. Researchers have tried to get volunteers from the far reaches of the globe to participate in web-based studies, but found that mice and keyboards and web page interfaces couldn’t provide the precision necessary for understanding the subtle details and changes of cognitive processes and behavioral responses.

Pick up the Phone

But now there’s a new way to bring non-WEIRD volunteers right to the researchers. The number of smartphone users worldwide is expected to top one billion by next year. The technology has found a home in almost every social group in every part of the world, Western and Eastern, educated and not, industrialized and agrarian, rich and poor, democratic, autocratic and theocratic. Not only are they everywhere, but they’re well suited to collecting scientific data. They can transmit and receive multiple types of media and commands, can transfer time- and location-coded data, and can time, down to the millisecond, stimuli display and touchscreen responses. They are, an international team of scientists suggested last year, ideally adapted to studying cognitive function and could be used as a “multi-dimensional scientific ‘instrument’ capable of experimentation on a previously unthought-of scale” that could reveal things about the human mind long hidden by smaller experiments.

Researchers could take advantage of smartphones to revolutionize research in cognitive science, the paper argues, but the studies and the technology have to come together in a way that makes it work. To see if smartphones could live up to their promise in a real-world study, Stephane Dufau, the lead author, and her team took their idea for a road-test, without ever leaving the lab.

An App for That

The researchers developed an iPhone/iPad app that replicates the "lexical decision task,” a test used by generations of psychologists. By measuring response time and accuracy in deciding if a given string of letters is a word (e.g. “table”) or not (e.g. “tible”), researchers have gained insight into the cognitive processes involved in reading, as well as reading impairments like dyslexia. The app, called Science XL, was made free for the general public to download from the App Store in seven different languages in December 2010. By March, 2011, the team had collected results from over four thousand participants, a number they say would have taken several years, and considerably more money, to collect via more conventional means.

The results collected so far are similar to those obtained by running the test in laboratory conditions and match many of the known features of this type of data, indicating that an app-based study like this doesn’t introduce variables that affect the results.

Another team of American researchers launched a similar app-based study to look at age-related differences in cognition. They got 15,000 people to participate and their results replicated specific patterns and data found in lab experiments. This study did reveal some problems with the app-based data collection, though. One hindrance the researchers noted is the lack of ability they had to monitor the participants. Their app instructions recommended that users complete their tasks without distractions, but there’s no way they could tell if someone used the app while multitasking or in a noisy environment, which might affect their performance.

Since there’s no obligation or accountability for completing the tasks, there was also a higher participant dropout rate than in many lab studies. Still, the researchers say that the larger sample size that the app gave them access to compensated for the loss in data amount and quality.

These two studies suggest smartphones are a reliable way to collect culturally and geographically diverse data on an enormous scale. The smartphone, far from being just a gadget that lets you tweet from the bathroom, could be as important to scientific exploration as the microscope or the lunar lander. They could potentially allow for direct tests of the universality of cognitive theories and make our understanding of ourselves a little less WEIRD.

The Science XL study is ongoing, so if you want to take part, the app is free to download from iTunes AppStore.

Original image
Hulton Archive/Getty
9 Facts about Physicist Michael Faraday, the 'Father of Electricity'
Original image
Hulton Archive/Getty

A self-taught scientist, Michael Faraday (1791-1867) excelled in chemistry and physics to become one of the most influential thinkers in history. He’s been called the "father of electricity," (Nikola Tesla and Thomas Edison also wear that crown) and his appetite for experimenting knew no bounds. "Nothing is too wonderful to be true, if it be consistent with the laws of nature; and in such things as these, experiment is the best test of such consistency," he wrote. Faraday discovered laws of electromagnetism, invented the first electric motor, and built the first electric generator—paving the way for our mechanized age. Read on for more Faraday facts.


Born in south London in a working-class family, Faraday earned a rudimentary education in reading, writing, and math. When he turned 14 he was apprenticed to a London bookbinder for the following seven years. In his free time, Faraday read Jane Marcet's Conversations in Chemistry, an 1806 bestseller that explained scientific topics for a general audience.


Like Marcet, Faraday was fascinated by the work of Sir Humphry Davy, a charismatic chemist who had found fame by testing the effects of nitrous oxide on himself. (He let others, including poet Samuel Taylor Coleridge, inhale the gas on the condition that they keep diaries of their thoughts and sensations while high.) In spring 1812, a customer at the bookbindery gave Faraday tickets to see Davy’s upcoming lectures. Faraday compiled his notes from the lectures in a bound volume (the one benefit of his toil at the bookbinder's) and sent the book to Davy, requesting to become his assistant—an unheard-of notion for a tradesman with no university degree. Sensing his intelligence and drive, Davy secured him a job at the Royal Institution, where Davy ran the chemistry lab.


By 1820, other scientists had shown that an electric current produces a magnetic field, and that two electrified wires produce a force on each other. Faraday thought there could be a way to harness these forces in a mechanical apparatus. In 1822, he built a device using a magnet, liquid mercury (which conducts electricity) and a current-carrying wire that turned electrical energy into mechanical energy—in other words, the first electric motor. Faraday noted the success in his journal [PDF]: "Very satisfactory, but make more sensible apparatus."


A decade after his breakthrough with the motor, Faraday discovered that the movement of a wire through a stationary magnetic field can induce an electrical current in the wire—the principle of electromagnetic induction. To demonstrate it, Faraday built a machine in which a copper disc rotated between the two poles of a horseshoe magnet, producing its own power. The machine, later called the Faraday disc, became the first electric generator.


In a brilliantly simple experiment (recreated by countless schoolchildren today), Faraday laid a bar magnet on a table and covered it with a piece of stiff paper. Then he sprinkled magnetized iron shavings across the paper, which immediately arranged themselves into semicircular arcs emanating from the ends—the north and south poles—of the magnet. In addition to revealing that magnets still exert pull through barriers, he visualized the pattern of magnetic force in space.


Faraday served in a number of scientific roles at the Royal Institution, an organization dedicated to promoting applied science. Eventually Faraday was appointed as its Fullerian Professor of Chemistry, a permanent position that allowed him to research and experiment to his heart's content. His magnetic laboratory from the 1850s is now faithfully replicated in the Royal Institution's Faraday Museum. It displays many of his world-changing gadgets, including an original Faraday disc, one of his early electrostatic generators, his chemical samples, and a giant magnet.


Faraday's work was so groundbreaking that no descriptors existed for many of his discoveries. With his fellow scientist William Whewell, Faraday coined a number of futuristic-sounding names for the forces and concepts he identified, such as electrode, anode, cathode, and ion. (Whewell himself coined the word "scientist" in 1834, after "natural philosopher" had become too vague to describe people working in increasingly specialized fields.)


In 1848, the Prince Consort, also known as Queen Victoria's husband Prince Albert, gave Faraday and his family a comfortable home at Hampton Court—not the royal palace, but near it—free of charge, to recognize his contributions to science. The house at 37 Hampton Court Road was renamed Faraday House until he died there on August 25, 1867. Now it's known simply by its street address.


To honor Faraday's role in the advancement of British science, the Bank of England unveiled a £20 bill with his portrait on June 5, 1991. He joined an illustrious group of Britons with their own notes, including William Shakespeare, Florence Nightingale, and Isaac Newton. By the time it was withdrawn in February 2001, the bank estimated that about 120 million Faraday bills were in circulation (that's more than 2 billion quid).

Original image
Richard Bouhet // Getty
4 Expert Tips on How to Get the Most Out of August's Total Solar Eclipse
Original image
Richard Bouhet // Getty

As you might have heard, there’s a total solar eclipse crossing the U.S. on August 21. It’s the first total solar eclipse in the country since 1979, and the first coast-to-coast event since June 8, 1918, when eclipse coverage pushed World War I off the front page of national newspapers. Americans are just as excited today: Thousands are hitting the road to stake out prime spots for watching the last cross-country total solar eclipse until 2045. We’ve asked experts for tips on getting the most out of this celestial spectacle.


To see the partial phases of the eclipse, you will need eclipse glasses because—surprise!—staring directly at the sun for even a minute or two will permanently damage your retinas. Make sure the glasses you buy meet the ISO 12312-2 safety standards. As eclipse frenzy nears its peak, shady retailers are selling knock-off glasses that will not adequately protect your eyes. The American Astronomical Society keeps a list of reputable vendors, but as a rule, if you can see anything other than the sun through your glasses, they might be bogus. There’s no need to splurge, however: You can order safe paper specs in bulk for as little as 90 cents each. In a pinch, you and your friends can take turns watching the partial phases through a shared pair of glasses. As eclipse chaser and author Kate Russo points out, “you only need to view occasionally—no need to sit and stare with them on the whole time.”


There are plenty of urban legends about “alternative” ways to protect your eyes while watching a solar eclipse: smoked glass, CDs, several pairs of sunglasses stacked on top of each other. None works. If you’re feeling crafty, or don’t have a pair of safe eclipse glasses, you can use a pinhole projector to indirectly watch the eclipse. NASA produced a how-to video to walk you through it.


Bryan Brewer, who published a guidebook for solar eclipses, tells Mental Floss the difference between seeing a partial solar eclipse and a total solar eclipse is “like the difference between standing right outside the arena and being inside watching the game.”

During totality, observers can take off their glasses and look up at the blocked-out sun—and around at their eerily twilit surroundings. Kate Russo’s advice: Don’t just stare at the sun. “You need to make sure you look above you, and around you as well so you can notice the changes that are happening,” she says. For a brief moment, stars will appear next to the sun and animals will begin their nighttime routines. Once you’ve taken in the scenery, you can use a telescope or a pair of binoculars to get a close look at the tendrils of flame that make up the sun’s corona.

Only a 70-mile-wide band of the country stretching from Oregon to South Carolina will experience the total eclipse. Rooms in the path of totality are reportedly going for as much as $1000 a night, and news outlets across the country have raised the specter of traffic armageddon. But if you can find a ride and a room, you'll be in good shape for witnessing the spectacle.


Your eyes need half an hour to fully adjust to darkness, but the total eclipse will last less than three minutes. If you’ve just been staring at the sun through the partial phases of the eclipse, your view of the corona during totality will be obscured by lousy night vision and annoying green afterimages. Eclipse chaser James McClean—who has trekked from Svalbard to Java to watch the moon blot out the sun—made this rookie mistake during one of his early eclipse sightings in Egypt in 2006. After watching the partial phases, with stray beams of sunlight reflecting into his eyes from the glittering sand and sea, McClean was snowblind throughout the totality.

Now he swears by a new method: blindfolding himself throughout the first phases of the eclipse to maximize his experience of the totality. He says he doesn’t mind “skipping the previews if it means getting a better view of the film.” Afterward, he pops on some eye protection to see the partial phases of the eclipse as the moon pulls away from the sun. If you do blindfold yourself, just remember to set an alarm for the time when the total eclipse begins so you don’t miss its cross-country journey. You'll have to wait 28 years for your next chance.


More from mental floss studios