CLOSE
Getty Images
Getty Images

10 Ways You Can Use Your Smartphone to Advance Science

Getty Images
Getty Images

Your iPhone is not living up to its full potential. Sure, everyone loves posting pictures of their cats to Instagram, and the new RadioLab app is awesome. But we're living in the future! Why not use those tiny computers we're all carrying around for something bigger, like helping advance knowledge in a way that would have been impossible just a few years ago?

Scientists have started to use the abilities and prevalence of smartphones to their advantage, creating apps specifically for their studies and crowdsourcing observation and data collection. When almost everyone has an Internet connection, a camera, and a GPS unit right in their phone, almost anyone can gather, organize, and submit data to help move a study along. Here are 10 projects and apps that will turn you into a citizen scientist.

1. Track Bird Populations

EBird, started by the Cornell Lab of Ornithology and National Audubon Society, is the world’s largest (97,987,797 observations as of the morning of July 10, 2012) online database of bird observations. Data gathered by smartphone-toting bird watchers around the world and shared via the BirdLog app is used by biologists, ornithologists, educators, land managers, conservationists and policy makers to track avian distribution, richness and biodiversity trends. They hope that “in time these data will become the foundation for a better understanding of bird distribution across the western hemisphere and beyond.” BirdLog is available for $9.99 iOS and Android devices

2. Map Meteoroids

NASA’s Meteor Counter app lets iOS users gather and share data about cosmic debris they spot in the sky. Using the app’s “piano key” interface, citizen scientists can quickly record the time, magnitude, latitude and longitude, and estimated brightness of shooting stars, and also annotate their observations with voice notes. When they’re done, they can upload everything to NASA so researchers can analyze the data. Don’t know where to look for meteors? The app also has a news feed and event calendar updated by professional astronomers to help you find upcoming meteor showers. Meteor Counter is available for free for iOS devices.

3. Listen in on Bats

The Indicator Bats Program (iBats), a joint project of the Zoological Society of London’s Institute of Zoology and The Bat Conservation Trust, got its start with a couple of researchers working in Transylvania (of course) in 2006. The idea of the project is to identify and monitor bat populations around the world by the ultrasonic echo-location calls they use to navigate and find prey. No easy task for the naked ear, but the iBats app can automatically extract key information from the calls, and identify the species from them. From there, the data gets sent to iBats so researchers can track any changes in abundance or distribution of different species. The app itself is free, but users also need an ultrasonic microphone to plug into their phone so the app can “hear” the call. These microphones can cost hundreds of dollars, and the folks behind the project encourage bat lovers to get together and chip in for one to share. iBats is available for free for iOS and Android devices

4. Count Roadkill

The Mammals on Roads project, run by the Peoples Trust for Endangered Species (PTES), uses surveys of dead mammal sightings along the UK’s roads to get an idea of population and distribution trends. Their Mammals on Roads app logs the travel routes of citizen scientists and lets them easily record which animals they’ve seen and where. Users can see the collected data themselves in the form of maps of their own trips and distribution maps from reports sent in from all over the country. The survey, taken annually since 2001, helped spot a major drop in hedgehog numbers over the course of a few years and led to the PTES launching “Hogwatch” and other hedgehog-focused tracking and conservation projects. Mammals on Roads is available for free for iOS devices, and an Android version will be available soon.

5. Inventory your Local Wildlife

The goal of Project NOAH (Networked Organisms and Habitats) is pretty ambitious: “build the go-to platform for documenting all the world's organisms.” Their app has two modes. “Spottings” lets you take photos of plants and animals you see, categorize and describe them and then submit the data for viewing on NOAH’s website and use by researchers for population and distribution studies.

Don’t know what you’re looking at? Check a box when you submit your photo and other users and scientists can help you identify the species. You can also use the location-based field guides to see other users’ Spottings near your location and learn more about your local wildlife. “Field Missions” let you help out with crowdsourced data collection for specific studies that labs have submitted to NOAH. You might be asked to photograph invasive beetles near your home, or log GPS coordinates when migrating flocks of birds pass over you, and if discovering wildlife and helping scientists isn’t enough motivation, completing missions also earns you cool badges in the app. Project NOAH is available for free for  iOS and Android devices

6. Identify and Track Trees

Leafsnap, developed as a joint project by Columbia University, the University of Maryland, and the Smithsonian Institution, is an electronic field guide for trees that uses visual recognition software to identify tree species from photographs of their leaves. User-generated images, species identifications, and geo-tagged stamps of species' locations are automatically shared with the partner institutions and other scientists who can use the data to map and monitor changes in floral density and diversity. Currently, only tree species found in New York City and Washington, D.C., are supported by the recognition software, but the team is “teaching” it other species and the list will continue to grow. Leafsnap is available for free for iOS devices and an Android version will be available soon.

7. Keep Tabs on Temperatures

Communicating Climate Change (C3) is a program run by 12 science centers around the country that introduces citizen scientists to the methods used to study climate change. The Maryland Science Center’s C3 project invites people to help study Baltimore’s Urban Heat Island (a UHI is the phenomenon of a metropolitan area being significantly warmer than its surrounding rural areas). Citizen scientists in Baltimore use the Temperature Blast app to collect live and archival Weatherbug data from select points around the city and log it for scientists at the Baltimore Ecosystem Study, who will then use it to create models of temperature patterns so they can mitigate the heat island effect in future urban planning. Temperature Blast is available for free for iOS and Android devices. If you’re not in the Baltimore area, there are other app-based C3 projects going on in other cities.

8. Monitor your local water

Citizen scientists using the Creek Watch app, developed by IBM’s Smarter Planet Project, collect four pieces of data - estimated amount of water, rate of flow, amount of trash and a picture - about waterways they pass and send it to IBM. The technology giant’s researchers aggregate the data and share it with water control boards across the U.S. to help them track pollution and better manage their water resources. Creek Watch is available for free for iOS devices (no word from IBM on an Android version yet).

9. Find Good Homes for Redwoods

Redwood Watch, a partnership between the Save the Redwoods League, iNaturalist.org, Google Earth Outreach, and the California Academy of Sciences, is recruiting citizen scientists to track the location of redwood trees and help find a home for them in the future. Just take a picture of a redwood wherever you see one - in a national park, a botanical garden or even your own yard - with the Redwood Watch app. The app sends the photo and your location to researchers who can use the data to assess which environments are healthiest for the trees, helping them understand where redwoods thrive in a changing climate so they can better focus their conservation efforts. Redwood watch is available for free for iOS devices.

10. Report Invaders

Invasive plants and animals can crowd out natives, compete with them for food sources and alter the fire ecology of an ecosystem, disrupting its natural balance. Researchers and programmers from UCLA, the Santa Monica Mountains National Recreation Area and the University of Georgia have teamed up to create the What’s Invasive citizen science program and smartphone app. Volunteers can use the app to look up lists of the top invasive species in their area, created by National Park Service rangers and biologists. If they spot a plant or animal from the list, they submit a geo-tagged observation, with optional picture and text notes, so that scientists can locate, identify, study try to remove the species. The What’s Invasive app is available for free for iOS and Android devices.
* * *
This is just a drop in the bucket of cool projects that let the average Joe take part in important science. For more projects you can help out with, some app-based, some not, check out the resources at Cornell’s Citizen Science Central, SciStarter and Scientific American. Are you involved in a citizen science project? Tell us all about it.

nextArticle.image_alt|e
iStock
arrow
science
The Surprising Reason Why Pen Caps Have Tiny Holes at the Top
iStock
iStock

If you’re an avid pen chewer, or even just a diehard fan of writing by hand, you’re probably well acquainted with the small hole that tops off most ballpoint pen caps, particularly those classic Bic Cristal pens. The reason it’s there has nothing to do with pen function, it turns out. As Science Alert recently reported, it’s actually designed to counter human carelessness.

Though it’s arguably unwise—not to mention unhygienic—to chomp or suck on a plastic pen cap all day, plenty of people do it, especially kids. And inevitably, that means some people end up swallowing their pen caps. Companies like Bic know this well—so they make pen caps that won’t impede breathing if they’re accidentally swallowed.

This isn’t only a Bic requirement, though the company’s Cristal pens do have particularly obvious holes. The International Organization for Standardization, a federation that sets industrial standards for 161 countries, requires it. ISO 11540 specifies that if pens must have caps, they should be designed to reduce the risk of asphyxiation if they’re swallowed.

It applies to writing instruments “which in normal or foreseeable circumstances are likely to be used by children up to the age of 14 years.” Fancy fountain pens and other writing instruments that are clearly designed for adult use don’t need to have holes in them, nor do caps that are large enough that you can’t swallow them. Any pen that could conceivably make its way into the hands of a child needs to have an air hole in the cap that provides a minimum flow of 8 liters (about 2 gallons) of air per minute, according to the standard [PDF].

Pen cap inhalation is a real danger, albeit a rare one, especially for primary school kids. A 2012 study [PDF] reported that pen caps account for somewhere between 3 and 8 percent of “foreign body aspiration,” the official term for inhaling something you’re not supposed to. Another study found that of 1280 kids (ages 6 to 14) treated between 1997 and 2007 for foreign body inhalation in Beijing, 34 had inhaled pen caps.

But the standards help keep kids alive. In that Beijing study, none of the 34 kids died, and the caps were successfully removed by doctors. That wasn’t always the case. In the UK, nine children asphyxiated due to swallowing pen caps between 1970 and 1984. After the UK adopted the international standard for air holes in pen caps, the number of deaths dropped precipitously [PDF]. Unfortunately, it’s not foolproof; in 2007, a 13-year-old in the UK died after accidentally swallowing his pen cap.

Even if you can still breathe through that little air hole, getting a smooth plastic pen cap out of your throat is no easy task for doctors. The graspers they normally use to take foreign bodies out of airways don’t always work, as that 2012 case report found, and hospitals sometimes have to employ different tools to get the stubbornly slippery caps out (in that study, they used a catheter that could work through the hole in the cap, then inflated a small balloon at the end of the catheter to pull the cap out). The procedure doesn’t exactly sound pleasant. So maybe resist the urge to put your pen cap in your mouth.

[h/t Science Alert]

nextArticle.image_alt|e
Mark Ralston/AFP/Getty Images
arrow
Big Questions
What Causes Sinkholes?
Mark Ralston/AFP/Getty Images
Mark Ralston/AFP/Getty Images

This week, a sinkhole opened up on the White House lawn—likely the result of excess rainfall on the "legitimate swamp" surrounding the storied building, a geologist told The New York Times. While the event had some suggesting we call for Buffy's help, sinkholes are pretty common. In the past few days alone, cavernous maws in the earth have appeared in Maryland, North Carolina, Tennessee, and of course Florida, home to more sinkholes than any other state.

Sinkholes have gulped down suburban homes, cars, and entire fields in the past. How does the ground just open up like that?

Sinkholes are a simple matter of cause and effect. Urban sinkholes may be directly traced to underground water main breaks or collapsed sewer pipelines, into which city sidewalks crumple in the absence of any structural support. In more rural areas, such catastrophes might be attributed to abandoned mine shafts or salt caverns that can't take the weight anymore. These types of sinkholes are heavily influenced by human action, but most sinkholes are unpredictable, inevitable natural occurrences.

Florida is so prone to sinkholes because it has the misfortune of being built upon a foundation of limestone—solid rock, but the kind that is easily dissolved by acidic rain or groundwater. The karst process, in which the mildly acidic water wears away at fractures in the limestone, leaves empty space where there used to be stone, and even the residue is washed away. Any loose soil, grass, or—for example—luxury condominiums perched atop the hole in the ground aren't left with much support. Just as a house built on a weak foundation is more likely to collapse, the same is true of the ground itself. Gravity eventually takes its toll, aided by natural erosion, and so the hole begins to sink.

About 10 percent of the world's landscape is composed of karst regions. Despite being common, sinkholes' unforeseeable nature serves as proof that the ground beneath our feet may not be as solid as we think.

A version of this story originally ran in 2014.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios