Why Don't Spiders Get Stuck in Their Webs?

Image credit: Stockbyte

When a bug flies into a spider web, the game is over. It’s almost instantly stuck, and a sitting duck for the web’s owner. When you or I walk into a web, we’re a little better off than the bug because we won’t be dinner, but the sticky strands of web are still a pain in the butt to pick off of clothes and skin.

The spider itself, which spends much more time in contact with the web than you or any bug, doesn’t seem to have any issues getting stuck as it moves around. What gives?

For a long time, people thought spiders didn’t get stuck because their legs were coated in an oil made inside their bodies. With their legs lubed up like this, there was nothing for the silk web strands to stick to. Early 20th century naturalists proposed this idea — that the spider “varnishes herself with a special sweat,” as one elegantly put it — after observing spiders in the wild. The hitch is that, for all the research on spiders scientists have done in the meantime, no one had bothered to test the idea until recently.

A study published last year by two biologists in Costa Rica, Daniel Briceño and William Eberhard, suggests that spiders stay unstuck thanks to a combination of behavior, anatomy and, yes, even an oily non-stick coating.

What a Web They Weave

The first thing that helps spiders from getting trapped is that not every part of every web is sticky. In many orb weaver spider webs, for example, only the spiral threads are made with sticky silk. The “spokes” that support the structure of the web and the center part of the web where the spider rests are made with “dry” silk.

Using the center area and the spokes, a spider can move all around the web, and even off of it, without any concern for getting stuck.

Neat Feet

The spiders that Briceño and Eberhard studied used the dry threads for moving around most of the time, but when prey landed on the webs and the spiders went to retrieve their dinner, they inevitably had to charge across a sticky section. Unlike their prey, though, the spiders didn’t just whack into the sticky threads willy-nilly. The scientists found that the spiders walk very carefully when on the sticky sections, holding their body clear of the web and making minimal contact with the threads with only the tips of their legs.

Under a microscope, Briceño and Eberhard saw that the sticky threads do indeed make contact with the spider and stick to the setae, or short bristly hairs, on their legs. As a spider pulls its leg of the web, though, the droplets of adhesives that sit on the thread slide toward the edge of the bristle, where they have contact with only the thin tip and easily pull away. All these bristles are also in irregular rows and break free from the sticky droplets one by one, not all at once, which keeps the adhesive force of multiple droplets from combining.

Smooth Like That

What is it about the setae that lets them shed the web’s adhesives so easily? When Briceño and Eberhard washed a detached spider leg and applied it to a sticky thread, the leg stuck and wasn’t as easily removed. They figured that the bristles must have either a chemical coating of anti-adhesive substances or a structural surface layer with anti-adhesive properties. After analyzing several compounds washed off the the spiders’ legs, they found several several oily substances — including n-dodecane, n-tridecane, and n-tetradecane — that could act as a non-stick coating.

The researchers couldn’t tell where the chemicals had come from, but scientists’ descriptions from the last century suggested that they were applied by the spider’s mouth. Sure enough, when Briceño and Eberhard washed a live spider’s legs, it passed each of the legs through its mouthparts, but they didn’t test whether or not any anti-adhesive material was being applied.

To see if the spiders were coating their own legs would require a pretty simple experiment, Eberhard told me via email, but the spider they were working with, Nephila clavipes, is only seasonally abundant. The study would have to wait until the population climbed again, so the source of the non-stick chemicals is still a mystery for now. In the meantime, he said, he’s looking into how spiders deal with a different type of silk, called cribellum silk, which can be sticky without being wet.

Big Questions
Why Are There No Snakes in Ireland?

Legend tells of St. Patrick using the power of his faith to drive all of Ireland’s snakes into the sea. It’s an impressive image, but there’s no way it could have happened.

There never were any snakes in Ireland, partly for the same reason that there are no snakes in Hawaii, Iceland, New Zealand, Greenland, or Antarctica: the Emerald Isle is, well, an island.

Eightofnine via Wikimedia Commons // Public Domain

Once upon a time, Ireland was connected to a larger landmass. But that time was an ice age that kept the land far too chilly for cold-blooded reptiles. As the ice age ended around 10,000 years ago, glaciers melted, pouring even more cold water into the now-impassable expanse between Ireland and its neighbors.

Other animals, like wild boars, lynx, and brown bears, managed to make it across—as did a single reptile: the common lizard. Snakes, however, missed their chance.

The country’s serpent-free reputation has, somewhat perversely, turned snake ownership into a status symbol. There have been numerous reports of large pet snakes escaping or being released. As of yet, no species has managed to take hold in the wild—a small miracle in itself.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at

Big Questions
How Do They Dye the Chicago River Green for St. Patrick's Day?

It wouldn’t be a St. Patrick’s Day celebration in the Windy City without 400,000 spectators crowding the banks of the Chicago River to “ooh” and “aah” at its (temporarily) emerald green tinge. But how do officials turn the water green?

First, a bit of history: The dyeing tradition became an annual thing nearly 60 years ago, in 1962, but its real origins go back even further. In the early days of his administration as Mayor of Chicago, Richard J. Daley was a man on a mission to develop the city’s riverfront area. There was just one problem: The river itself was a sewage-filled eyesore. In order to get to the bottom of the city’s pollution problem and pinpoint the exact places where waste was being discarded into the waterway (and by whom), Daley authorized the pouring of a special green dye into the river that would allow them to see exactly where dumping was occurring.

Fast-forward to late 1961 when Stephen Bailey—part of the Chicago Journeymen Plumbers Local, the city’s St. Patrick’s Day Parade chairman, and a childhood friend of Daley’s—witnessed a colleague’s green-soaked coveralls following a day of pouring Daley’s dye into the Chicago River. That gave Bailey an idea: If they could streak the Chicago River green, why not turn it all green?

Three months later, revelers got their first look at an Ecto Cooler-colored river when the city poured 100 pounds of the chemical into the water. They got a really good look, too, as the river remained green for an entire week.

Over the next several years, the same practice was repeated, and again it was carried out by the Plumbers Local. The only difference was that the amount of dye used was cut in half over the next two years until they finally arrived at the magic number: 25 pounds of dye = one day of green water.

Unfortunately, the dye that was intended to help spot pollution was an oil-based fluorescein that many environmentalists warned was actually damaging the river even more. After fierce lobbying, eco-minded heads prevailed, and in 1966 the parade organizers began using a powdered, vegetable-based dye.

While the exact formula for the orange powder (yes, it's orange until it's mixed with water) is kept top-secret—in 2003 one of the parade organizers told a reporter that revealing the formula would be akin to “telling where the leprechaun hides its gold”—there are plenty of details that the committee lets even non-leprechauns in on.

The dyeing process will begin at 9 a.m. on the morning of the parade, Saturday, March 17 (it's always held on a Saturday) when six members of the local Plumbers Union hop aboard two boats, four of them on the larger vessel, the remaining two on a smaller boat.

The larger boat heads out onto the water first, with three members of the crew using flour sifters to spread the dye into the river. The smaller boat follows closely behind in order to help disperse the substance. (The best place to catch a glimpse is from the east side of the bridge at Michigan Avenue, or on Upper and Lower Wacker Drive between Columbus and Lake Shore Drives.)

Approximately 45 minutes later, voila, the Chicago River is green—but don’t expect it to stay that way. These days, the color only sticks around for about five hours. Which is roughly the same amount of time it takes to get a perfectly poured pint of Guinness if you venture out to an Irish pub on St. Patrick’s Day.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at


More from mental floss studios