International Bureau of Weights and Measures
International Bureau of Weights and Measures

Why the Metric System Might Be Screwed

International Bureau of Weights and Measures
International Bureau of Weights and Measures

The world’s most perfect weight isn’t so perfect anymore. And that has scientists scared.

Hidden in a vault outside Paris, vacuum-sealed under three bell jars, sits a palm-sized metal cylinder known as the International Prototype Kilogram, or “Le Grand K.” Forged in 1879 from an alloy of platinum and iridium, it was hailed as the “perfect” kilogram—the gold standard by which other kilograms would be judged.

Although it’s arguably the world’s most famous weight, Le Grand K doesn’t get out much. Since hydrocarbons on fingertips or moisture in the air could contaminate its pristine surface, it goes untouched for decades, under triple lock and key at the International Bureau of Weights and Measures. Every 40 years, however, it makes an appearance. The weight is ushered from its chamber, washed with alcohol, polished, and weighed against 80 official replicas hand-delivered from laboratories around the world. Today, whenever scientists need to verify something is precisely one kilogram, they turn to one of these replicas, over which Le Grand K reigns supreme.

This system sounds absurd, but not too long ago, lots of units relied on similar methods. The kilogram was just one of seven standards of measurement established by the French Academy of Sciences in 1791, all based on physical prototypes. These benchmarks caught on worldwide because standardization was sorely needed. At the time, some 250,000 different units of weights and measures existed in France alone, which meant that the only constant was complete chaos.

Weight Problem

While basing measurements on tangible benchmarks was an improvement, using physical standards wasn’t without its flaws. For one, they have a nasty habit of changing. In Le Grand K’s case, it’s been losing weight. At its most recent weigh-in in 1988, it was found to be 0.05 milligrams—about the weight of a grain of sand—lighter than its underling replicas. Experts aren’t sure where this weight went, but some theorize that the replicas have been handled more often, which could subtly add weight. Others postulate Le Grand K’s alloy is “outgassing,” which means air is gradually escaping the metal.

Whatever the reason for Le Grand K’s gradual wasting away, it’s got scientists scrambling for a more reliable standard. Some argue that this is long overdue, since all other units of measurement are already defined by fundamental constants of nature that can be reproduced anywhere anytime (provided you’ve got some sophisticated lab equipment). The meter, for example, used to be defined by a metal rod stored alongside Le Grand K. But in 1983, it was redefined as the distance light travels in a vacuum during 1/299,792,458 of a second.

Standardizing the kilogram has been trickier, though. Australian scientists are polishing a one-kilogram sphere of silicon, hoping that they’ll be able to count the number of atoms it contains to create a more accurate standard. American physicists at the National Institute of Standards and Technology (NIST) are attempting to redefine a kilogram in terms of the amount of voltage required to levitate a weight. But so far, neither approach can match Le Grand K’s accuracy.

Why should we care whether a kilogram in a vault is “perfect” or not? Because it’s bad news when your standard is no longer standardized. While no one’s worried whether a single kilogram of apples is a hair lighter or heavier at the produce stand, a small discrepancy can become a gargantuan one if you’re dealing with, say, a whole tanker of wheat. The kilogram is also used as a building block in other measurements. The joule, for instance, is the amount of energy required to move a one-kilogram weight one meter. The candela, a measure of the brightness of light, is measured in joules per second.

These links mean that if the kilogram is flawed, so are the joule and candela, which could eventually cause problems in an array of industries, particularly in technology. As microchips process more information at higher speeds, even tiny deviations will lead to catastrophes. Le Grand K’s unreliability “will start to be noticeable in the next decade or two in the electronics industry,” warns NIST physicist Richard Steiner. If your next smartphone is buggy, you’ll know which hunk of metal to blame.

So scientists continue to chase the perfect kilogram. “Maybe we have all been looking for too high-tech an answer,” says Stuart Davidson of England’s National Physical Laboratory. “There could be something really obvious out there we’ve missed.” The NPL’s website encourages others to give it a shot: Any better ideas on a postcard please. Until then, Le Grand K will remain king—short of true perfection, but as perfect as it gets.

Scott Butner, Flickr // CC BY-NC-ND 2.0
Look Up! The Lyrid Meteor Shower Arrives Saturday Night
Scott Butner, Flickr // CC BY-NC-ND 2.0
Scott Butner, Flickr // CC BY-NC-ND 2.0

There is a thin line between Saturday night and Sunday morning, but this weekend, look up and you might see several of them. Between 11:59 p.m. on April 21 and dawn on Sunday, April 22, the Lyrid meteor shower will peak over the Northern Hemisphere. Make some time for the celestial show and you'll see a shooting star streaking across the night sky every few minutes. Here is everything you need to know.


Every 415.5 years, the comet Thatcher circles the Sun in a highly eccentric orbit shaped almost like a cat's eye. At its farthest from the Sun, it's billions of miles from Pluto; at its nearest, it swings between the Earth and Mars. (The last time it was near the Earth was in 1861, and it won't be that close again until 2280.) That's quite a journey, and more pressingly, quite a variation in temperature. The closer it gets to the Sun, the more debris it sheds. That debris is what you're seeing when you see a meteor shower: dust-sized particles slamming into the Earth's atmosphere at tens of thousands of miles per hour. In a competition between the two, the Earth is going to win, and "shooting stars" are the result of energy released as the particles are vaporized.

The comet was spotted on April 4, 1861 by A.E. Thatcher, an amateur skywatcher in New York City, earning him kudos from the noted astronomer Sir John Herschel. Clues to the comet's discovery are in its astronomical designation, C/1861 G1. The "C" means it's a long-period comet with an orbit of more than 200 years; "G" stands for the first half of April, and the "1" indicates it was the first comet discovered in that timeframe.

Sightings of the Lyrid meteor shower—named after Lyra, the constellation it appears to originate from—are much older; the first record dates to 7th-century BCE China.


Saturday night marks a first quarter Moon (visually half the Moon), which by midnight will have set below the horizon, so it won't wash out the night sky. That's great news—you can expect to see 20 meteors per hour. You're going to need to get away from local light pollution and find truly dark skies, and to completely avoid smartphones, flashlights, car headlights, or dome lights. The goal is to let your eyes adjust totally to the darkness: Find your viewing area, lay out your blanket, lay down, look up, and wait. In an hour, you'll be able to see the night sky with great—and if you've never done this before, surprising—clarity. Don't touch the smartphone or you'll undo all your hard ocular work.

Where is the nearest dark sky to where you live? You can find out on the Dark Site Finder map. And because the shower peaks on a Saturday night, your local astronomy club is very likely going to have an event to celebrate the Lyrids. Looking for a local club? Sky & Telescope has you covered.


You don't need a telescope to see a meteor shower, but if you bring one, aim it south to find Jupiter. It's the bright, unblinking spot in the sky. With a telescope, you should be able to make out its stripes. Those five stars surrounding it are the constellation Libra. You'll notice also four tiny points of light nearby. Those are the Galilean moons: Io, Europa, Ganymede, and Callisto. When Galileo discovered those moons in 1610, he was able to prove the Copernican model of heliocentricity: that the Earth goes around the Sun.


First: Don't panic. The shower peaks on the early morning of the 22nd. But it doesn't end that day. You can try again on the 23rd and 24th, though the numbers of meteors will likely diminish. The Lyrids will be back next year, and the year after, and so on. But if you are eager for another show, on May 6, the Eta Aquariids will be at their strongest. The night sky always delivers.

Can You 'Hear' These Silent GIFs?

GIFs are silent—otherwise they wouldn't be GIFs. But some people claim to hear distinct noises accompanying certain clips. Check out the GIF below as an example: Do you hear a boom every time the structure hits the ground? If so, you may belong to the 20 to 30 percent of people who experience "visual-evoked auditory response," also known as vEAR.

Researchers from City University London recently published a paper online on the phenomenon in the journal Cortex, the British Psychological Society's Research Digest reports. For their study, they recruited more than 4000 volunteers and 126 paid participants and showed them 24 five-second video clips. Each clip lacked audio, but when asked how they rated the auditory sensation for each video on a scale of 0 to 5, 20 percent of the paid participants rated at least half the videos a 3 or more. The percentage was even higher for the volunteer group.

You can try out the researchers' survey yourself. It takes about 10 minutes.

The likelihood of visual-evoked auditory response, according to the researchers, directly relates to what the subject is looking at. "Some people hear what they see: Car indicator lights, flashing neon shop signs, and people's movements as they walk may all trigger an auditory sensation," they write in the study.

Images packed with meaning, like two cars colliding, are more likely to trigger the auditory illusion. But even more abstract images can produce the effect if they have high levels of something called "motion energy." Motion energy is what you see in the video above when the structure bounces and the camera shakes. It's why a video of a race car driving straight down a road might have less of an auditory impact than a clip of a flickering abstract pattern.

The researchers categorize vEAR as a type of synesthesia, a brain condition in which people's senses are combined. Those with synesthesia might "see" patterns when music plays or "taste" certain colors. Most synesthesia is rare, affecting just 4 percent of the population, but this new study suggests that "hearing motion synesthesia" is much more prevalent.

[h/t BPS Research Digest]