How Fake Snow Works

Last Christmas, I received a curious gift: a tiny bag of white crystals labeled Fake Snow. "Just add water," it said. So I did. And the crazy stuff puffed up unbelievably, forming a white-ish snow-like substance. Even weirder, the bag indicated that the snow could be dried out and reused (!) -- I didn't try that part.

So what is fake snow? Apparently the powder I had was primarily sodium polyacrylate, a polymer that can absorb 200-300x its own mass in water. This polymer also shows up in diapers and maxi-pads (thank you, science) and also in gardens, where it's used to hang onto water and release it over time. So indeed, if you take a batch of sodium polyacrylate, add water, then let it dry out, you can use it again. It's even "non-toxic" (though the packet, and various web resources I consulted, suggested that eating it would be a really bad idea due to its affinity for bonding with any nearby water). Apparently it should also not be poured down drains, for obvious reasons.

This video shows closeups of how sodium polyacrylate behaves when water is added. It's astounding how much water a tiny bit of this stuff can suck up. Enjoy:

And here's a slightly off-kilter ad for "Snow in Seconds™," showing how quickly the sodium polyacrylate absorbs water and puffs up, delighting kids and nerds alike. "It's even used in movies!" Note that the ad mentions how the snow "feels cold" -- this is because the substance ends up being primarily water, so handling it is like putting your hands in blobs of water. (You can also put it in a refrigerator to make it colder -- again, it's mainly water so it has similar behavior.) It takes a few days to dry out, and can be rehydrated when that occurs.

And here's a very short video showing water being added directly to a beaker of this stuff. It really is neat!

There are lots of fake snows online, though I couldn't find the sketchy dollar-store brand I used.

Have You Used Fake Snow?

I'm sure we have some fake snow experts in the audience. Can you share more about this substance? Do you save your fake snow and reuse it year after year? I'm genuinely curious how people interact with this stuff -- as I plan to turn my house into a Fake Snow Fortress this winter. (Watch out for wampas.)

Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

Ocean Waves Are Powerful Enough to Toss Enormous Boulders Onto Land, Study Finds

During the winter of 2013-2014, the UK and Ireland were buffeted by a number of unusually powerful storms, causing widespread floods, landslides, and coastal evacuations. But the impact of the storm season stretched far beyond its effect on urban areas, as a new study in Earth-Science Reviews details. As we spotted on Boing Boing, geoscientists from Williams College in Massachusetts found that the storms had an enormous influence on the remote, uninhabited coast of western Ireland—one that shows the sheer power of ocean waves in a whole new light.

The rugged terrain of Ireland’s western coast includes gigantic ocean boulders located just off a coastline protected by high, steep cliffs. These massive rocks can weigh hundreds of tons, but a strong-enough wave can dislodge them, hurling them out of the ocean entirely. In some cases, these boulders are now located more than 950 feet inland. Though previous research has hypothesized that it often takes tsunami-strength waves to move such heavy rocks onto land, this study finds that the severe storms of the 2013-2014 season were more than capable.

Studying boulder deposits in Ireland’s County Mayo and County Clare, the Williams College team recorded two massive boulders—one weighing around 680 tons and one weighing about 520 tons—moving significantly during that winter, shifting more than 11 and 13 feet, respectively. That may not sound like a significant distance at first glance, but for some perspective, consider that a blue whale weighs about 150 tons. The larger of these two boulders weighs more than four blue whales.

Smaller boulders (relatively speaking) traveled much farther. The biggest boulder movement they observed was more than 310 feet—for a boulder that weighed more than 44 tons.

These boulder deposits "represent the inland transfer of extraordinary wave energies," the researchers write. "[Because they] record the highest energy coastal processes, they are key elements in trying to model and forecast interactions between waves and coasts." Those models are becoming more important as climate change increases the frequency and severity of storms.

[h/t Boing Boing]


More from mental floss studios