CLOSE
Original image

Could Humans Hibernate?

Original image

Some animals have it made. Their whole day revolves around eating and having sex (and, to be fair, trying not to get eaten themselves). And when winter arrives, they get to curl up somewhere and wait things out until the weather is nice again. Can humans get in on this hibernation thing?

Bear image via Shutterstock

First, a note on the lingo. While people often use the term loosely to refer to any state of dormancy in animals, true hibernation is a pretty specific thing characterized by “profound reductions in metabolism, oxygen consumption and heart rate.”

A hibernating animal’s core body temperature drops to extreme lows, sometimes matching the local outside temperature. As its body cools, its metabolism slows. This reduces the need for oxygen, and its breathing will also slow, sometimes to just one to five breaths per minute. The heart rate will likewise slow to just a few beats per minute. All of this ensures that the animal’s body will conserve as much energy as possible, which is necessary because it’s largely fueling itself with a limited supply of fat. "True hibernators" don’t shut down for the whole winter, though, and occasionally rouse to use the bathroom, eat from stored food, and stretch a little so their muscles don’t atrophy. Some animals may even switch hibernation spots.

Animals go into this energy-saving mode to ride out long stretches of environmental extremes, like lack of food and water, or very cold or very hot seasonal temperatures (dormancy during cold seasons is hibernation, and dormancy in the summer is called aestivation). Humans can deal with these situations while remaining active because we have things like canned food, greenhouse tomatoes, air conditioners, heaters, and turtleneck sweaters. Our bodies aren’t required to hibernate and we’re not perfectly adapted to it, but scientists have turned up a number of ways in which we’re pretty close.

Deep Sleepers

There are plenty of documented cases of humans going into hibernation-like states. In October, 2006, rescuers found Mitsutaka Uchikoshi 24 days after he’d gone missing on western Japan’s Mount Rokko. When they discovered him, he had no detectable pulse or respiration and his body temperature had dropped to 71 degrees Fahrenheit. Doctors would later confirm that his metabolism was almost at a standstill. When he woke up, remarkably showing no signs of brain damage or other ill effects, he explained that the last thing he remembered was falling on the trail and hitting his head. The entire time he’d been missing, he was unconscious, exposed to the elements and without food or water. The doctors who treated him said that the quick onset of hypothermia slowed his body down like hibernation would, and probably saved his life.

Similar survival stories include a Norwegian skier who’d fallen into icy water and woke up unfazed after showing no heartbeat, no respiration, and a core temperature of 57ºF, and the Canadian toddler who got lost outside on a cold night and was later revived after cooling to 61ºF and exhibiting no heartbeat for a full two hours.

In a controlled experiment in the early 1970s, the Yogi Satyamurti confined himself to a small, sealed underground pit in a state of deep meditation for eight straight days while being monitored by an electrocardiogram. At first, the yogi’s heart rate was normal, and then increased to 250 bpm for a while. On the evening to the second day, the ECG flatlined and remained like that until about 30 minutes before the pit was scheduled to be opened on the last day. The astonished researchers who’d been monitoring the yogi - whose core temperature had dropped four degrees in the pit - were sure that something was wrong with their equipment, but couldn’t find any malfunction or explanation besides the yogi’s heart stopping or decreasing in electrical activity below a recordable level.

Sleep image via Shutterstock

It looks like our bodies have some of the abilities needed for hibernation. But like we said already, we’ve never had to, so our bodies aren’t completely adapted to the task. A few of the things holding us back are rather big obstacles. For example, researchers at the Paul Flechsig Institute for Brain Research in Leipzig discovered a few years ago that the brains of hibernating ground squirrels have brain cells containing modified proteins that are similar to those in the brains of Alzheimer's patients. The synapses that connect the brain’s neurons in both groups were also similarly degraded. The catch is that the squirrels’ brains bounce back after hibernation. They repair themselves and the animals show no signs of damage when they wake up in the spring, while human brains in the same state continue to deteriorate.

But hibernation on-demand would be useful to humans for reasons other than avoiding winter. Inducing hibernation in an accident victim on the way to the hospital could stave off extreme blood loss and cell breakdown, plus buy surgeons extra time to repair the injuries. It would also allow for the sort of space exploration that only seems possible in the movies. Placing astronauts in a dormant state, like in the Alien franchise, would allow them to sleep off the multiple years it would take for a spacecraft to travel to the outer reaches of the solar system and beyond.

Put to Bed

Researchers have been toying around with various ways to turn hibernation states “on” in animals over the last few years. Hydrogen sulfide seems to be one possible way to do that. By binding at the same cell sites as oxygen, the gaseous compound reduces the need for oxygen and depresses the metabolism. Mark Roth at the Fred Hutchinson Cancer Research Center in Seattle induced hibernation for the first time in lab mice in 2005 by having them inhale large doses of a hydrogen sulfide gas. Their metabolic processes slowed, their temperatures dropped, and then they snapped right out of it when they got a big breath of oxygen hours later.

Surgeons at Massachusetts General Hospital took a different approach in an experiment on Yorkshire pigs, to see how beneficial induced hibernation was in a trauma setting. After anesthetizing the pigs and giving them serious wounds that led to shock and extreme blood loss, the surgeons quickly chilled the pigs' bodies to 50ºF and pumped their veins full of a solution used for preserving transplant organs. At that point, the pigs were almost dead. They had little to no heartbeat, extremely reduced blood flow and no measurable electrical activity in the brain. The surgeons operated on the pigs and repaired their injuries. The pigs were revived when their temperatures were returned to normal and warm blood was pumped back in. The pigs bounced back with no noticeable physical or cognitive impairments.

While these are incredible breakthroughs and promising starts, we’re still a long way from making human hibernation simple, safe, and reliable. Other experiments failed to induce hibernation in sheep and pigs with hydrogen sulfide, so it might not work on larger animals, including us. Testing the Massachusetts method on humans, meanwhile, would be a bit tricky, ethically speaking. It’s a start, though, and sooner or later we might move beyond mere sleep and hibernate our way through surgery, or a flight to Jupiter.

Original image
iStock
arrow
Big Questions
What's the Difference Between Vanilla and French Vanilla Ice Cream?
Original image
iStock

While you’re browsing the ice cream aisle, you may find yourself wondering, “What’s so French about French vanilla?” The name may sound a little fancier than just plain ol’ “vanilla,” but it has nothing to do with the origin of the vanilla itself. (Vanilla is a tropical plant that grows near the equator.)

The difference comes down to eggs, as The Kitchn explains. You may have already noticed that French vanilla ice cream tends to have a slightly yellow coloring, while plain vanilla ice cream is more white. That’s because the base of French vanilla ice cream has egg yolks added to it.

The eggs give French vanilla ice cream both a smoother consistency and that subtle yellow color. The taste is a little richer and a little more complex than a regular vanilla, which is made with just milk and cream and is sometimes called “Philadelphia-style vanilla” ice cream.

In an interview with NPR’s All Things Considered in 2010—when Baskin-Robbins decided to eliminate French Vanilla from its ice cream lineup—ice cream industry consultant Bruce Tharp noted that French vanilla ice cream may date back to at least colonial times, when Thomas Jefferson and George Washington both used ice cream recipes that included egg yolks.

Jefferson likely acquired his taste for ice cream during the time he spent in France, and served it to his White House guests several times. His family’s ice cream recipe—which calls for six egg yolks per quart of cream—seems to have originated with his French butler.

But everyone already knew to trust the French with their dairy products, right?

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Original image
NASA/JPL-Caltech/Space Science Institute
arrow
Big Questions
How Many Rings Does Saturn Have?
Original image
NASA/JPL-Caltech/Space Science Institute

Of all the planets surrounded by rings, Saturn is the most famous. These planetary rings are massive enough that Galileo was able to see them using a simple telescope way back in 1610, though it wasn't until half a century later that another scientist was able to figure out what the "arms" Galileo saw actually were. NASA has since called them "the most recognized characteristic of any world in our solar system."

So how many rings does Saturn have, anyway? If you can see them from your backyard, there must be a lot, right?

Scientists don't know for sure exactly how many rings Saturn has. There are eight main, named ring groups that stretch across 175,000 miles, but there are far more than eight rings. These systems are named with letters of the alphabet, in order of their discovery. (Astronomers have known about ring groups A, B, and C since the 17th century, while others are newer discoveries. (The most recent was just discovered in 2009.)

The rings we can see in images of the planet—even high-resolution images—aren't single rings, per se, but are in fact comprised of thousands of smaller ringlets and can differ a lot in appearance, showing irregular ripples, kinks, and spokes. The chunky particles of ice that make up Saturn's rings vary in size from as small as a speck of dust to as large as a mountain.

While the gaps between Saturn's rings are small, the 26-mile-wide Keeler Gap is large enough to contain multiple moons, albeit very small ones. The largest ring system—the one discovered in 2009—starts 3.7 million miles away from Saturn itself and its material extends another 7.4 million miles out, though it's nearly invisible without the help of an infrared camera.

Researchers are still discovering new rings as well as new insights into the features of Saturn's already-known ring systems. In the early 1980s, NASA's Voyager missions took the first high-resolution images of Saturn and its rings, revealing previously unknown kinks in one of the narrower rings, known as the F ring. In 1997, NASA sent the Cassini orbiter to continue the space agency's study of the ringed planet, leading to the discovery of new rings, so faint that they remained unknown until Cassini's arrival in 2006. Before Cassini is sent to burn up in Saturn's atmosphere in September 2017, it's taking 22 dives through the space between the planet and its rings, bringing back new, up-close revelations about the ring system before the spacecraft dives to its death.

Though it's certainly possible to see Saturn's rings without any fancy equipment, using a low-end telescope at your house, that doesn't mean you always can. It depends on the way the planet is tilted; if you're looking at the rings edge-on, they may look like a flat line or, depending on the magnification, you might not be able to see them at all. However, 2017 happens to be a good year to see the sixth planet, so you're in luck.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

More from mental floss studios