CLOSE
Original image

Australian Toilets Don't Flush Backwards Because of the Coriolis Effect

Original image

Toilet image via Shutterstock

File under "News to Me": you know that old story about how northern hemisphere toilets flush counter-clockwise, and southern hemisphere toilets (and buckets, drains, and such) flush clockwise, due to the Coriolis effect? It's bogus! Today I learned that while the Coriolis effect is significant for hurricanes, it's not strong enough to make toilets flush in different directions at different points on the Earth. The real cause of "backwards"-flushing toilets is just that the water jets point in the opposite direction. Mind blown. (Mind blown even more because this was the inciting event on a Simpsons episode, and everybody knows cartoons are never wrong.)

Let's Talk Science

So there is indeed a Coriolis effect, and we see it on grand scales -- hurricanes in different hemispheres tend to rotate in different directions, because the underlying Earth is spinning, and the effect is exaggerated as you move farther from the equator. This Penn State science page by Professor of Meteorology Alistair B. Fraser explains:

On the scale of hurricanes and large mid-latitude storms, the Coriolis force causes the air to rotate around a low pressure center in a cyclonic direction. Indeed, the term cyclonic not only means that the fluid (air or water) rotates in the same direction as the underlying Earth, but also that the rotation of the fluid is due to the rotation of the Earth. Thus, the air flowing around a hurricane spins counter-clockwise in the northern hemisphere, and clockwise in the southern hemisphere (as does the Earth, itself). In both hemispheres, this rotation is deemed cyclonic. If the Earth did not rotate, the air would flow directly in towards the low pressure center, but on a spinning Earth, the Coriolis force causes that air to be deviated with the result that it travels around the low pressure center.

So it works on large scales. But on small scales (like in your toilet, sink, or bucket), the rotation of the Earth itself (at a decidedly pokey rate of one rotation per day) is much weaker than other forces -- like the force of water jets in a toilet, or the force of water hitting slopes in a sink.

The Pole to Pole Problem

In tracking down where this drain-direction myth originated and how it got so firmly lodged in the heads of people like me, many sources discuss the (otherwise awesome) Michael Palin documentary Pole to Pole, in which Palin visits the equator in Kenya and observes a tourist trap in which a man "demonstrates" (via fakery) the draining of water in different ways on the equator itself, and just north and south of it. Palin doesn't point out that it's fake. I remember seeing this documentary when it came out, and it may be where I picked up the notion -- it seems like such an appealing demonstration of science, such an "ah-ha!" moment that of course the rotation of the Earth should cause such changes in draining water! We're all tiny ants on a huge spinning globe! What wonders! Sadly, it's BS. Again, Fraser has a good write-up; here's a snippet:

[T]he faker must be forcing the rotation by other means, and by a sufficiently unobtrusive way that the busloads of tourists do not spot the means. Indeed, a colleague of mine, who witnessed the performance first hand and knew it was a cheat, was not able to spot how the fraud was perpetrated. (It is an interesting sidelight that when back on the bus, he informed his fellow tourists that they had just witnessed fakery --- the Earth did not cause the rotation they had just seen --- there was widespread disappointment. The tourists preferred the fantasy to the reality.)

Fraser proceeds to explain how you can fake it yourself.

The Plot Thickens

According to various sources, it is possible to demonstrate a Coriolis effect on water on a small scale, but only under extremely controlled circumstances -- involving predictably shaped water vessels, long periods of time of waiting for water to become as still as possible, carefully removing a stopper in the bottom of the vessel without adding spin, and other such crazy stuff. But in your typical toilet or sink, the Coriolis force is so small as to be undetectable relative to other forces. Even holding a bowl of water and turning around introduces sufficient spin to get things going in one direction or another.

A Fun Experiment

Go to your bathroom now and observe water going down the drain -- any drain you want. Depending on the efficiency of your plumbing, you may need to stop up the drain, fill the basin, then unplug it and wait. (It might also help to have something lightweight floating in there, to mark any motion -- a few bits of tissue may work, or a matchstick or two.) Observe whether the draining water forms a clockwise or counter-clockwise spiral. Go ahead, I'll wait. Now check all the other drains you can find. Do they match? In my (admittedly unscientific) testing just now, one sink drained clockwise, the other counter-clockwise, one didn't have an easily observable spin (it's small), and the toilet was also counter-clockwise, clearly due to the position of its water jets. Well. There you go: science in action.

(Via Steven Frank, via Snopes. Note that we covered this topic back in 2007 as well.)

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Library of Congress
war
arrow
10 Facts About the Tomb of the Unknown Soldier
May 29, 2017
Original image
Library of Congress

On Veterans Day, 1921, President Warren G. Harding presided over an interment ceremony at Arlington National Cemetery for an unknown soldier who died during World War I. Since then, three more soldiers have been added to the Tomb of the Unknowns (also known as the Tomb of the Unknown Soldier) memorial—and one has been disinterred. Below, a few things you might not know about the historic site and the rituals that surround it.

1. THERE WERE FOUR UNKNOWN SOLDIER CANDIDATES FOR THE WWI CRYPT. 

Wikimedia Commons // Public Domain

To ensure a truly random selection, four unknown soldiers were exhumed from four different WWI American cemeteries in France. U.S. Army Sgt. Edward F. Younger, who was wounded in combat and received the Distinguished Service Medal, was chosen to select a soldier for burial at the Tomb of the Unknowns in Arlington. After the four identical caskets were lined up for his inspection, Younger chose the third casket from the left by placing a spray of white roses on it. The chosen soldier was transported to the U.S. on the USS Olympia, while the other three were reburied at Meuse Argonne American Cemetery in France.

2. SIMILARLY, TWO UNKNOWN SOLDIERS WERE SELECTED AS POTENTIAL REPRESENTATIVES OF WWII.

One had served in the European Theater and the other served in the Pacific Theater. The Navy’s only active-duty Medal of Honor recipient, Hospitalman 1st Class William R. Charette, chose one of the identical caskets to go on to Arlington. The other was given a burial at sea.

3. THERE WERE FOUR POTENTIAL KOREAN WAR REPRESENTATIVES.

WikimediaCommons // Public Domain

The soldiers were disinterred from the National Cemetery of the Pacific in Hawaii. This time, Army Master Sgt. Ned Lyle was the one to choose the casket. Along with the unknown soldier from WWII, the unknown Korean War soldier lay in the Capitol Rotunda from May 28 to May 30, 1958.

4. THE VIETNAM WAR UNKNOWN WAS SELECTED ON MAY 17, 1984.

Medal of Honor recipient U.S. Marine Corps Sgt. Maj. Allan Jay Kellogg, Jr., selected the Vietnam War representative during a ceremony at Pearl Harbor.

5. BUT THE VIETNAM VETERAN WASN'T UNKNOWN FOR LONG.

Wikipedia // Public Domain

Thanks to advances in mitochondrial DNA testing, scientists were eventually able to identify the remains of the Vietnam War soldier. On May 14, 1998, the remains were exhumed and tested, revealing the “unknown” soldier to be Air Force 1st Lt. Michael Joseph Blassie (pictured). Blassie was shot down near An Loc, Vietnam, in 1972. After his identification, Blassie’s family had him moved to Jefferson Barracks National Cemetery in St. Louis. Instead of adding another unknown soldier to the Vietnam War crypt, the crypt cover has been replaced with one bearing the inscription, “Honoring and Keeping Faith with America’s Missing Servicemen, 1958-1975.”

6. THE MARBLE SCULPTORS ARE RESPONSIBLE FOR MANY OTHER U.S. MONUMENTS. 

The Tomb was designed by architect Lorimer Rich and sculptor Thomas Hudson Jones, but the actual carving was done by the Piccirilli Brothers. Even if you don’t know them, you know their work: The brothers carved the 19-foot statue of Abraham Lincoln for the Lincoln Memorial, the lions outside of the New York Public Library, the Maine Monument in Central Park, the DuPont Circle Fountain in D.C., and much more.

7. THE TOMB HAS BEEN GUARDED 24/7 SINCE 1937. 

Tomb Guards come from the 3rd U.S. Infantry Regiment "The Old Guard". Serving the U.S. since 1784, the Old Guard is the oldest active infantry unit in the military. They keep watch over the memorial every minute of every day, including when the cemetery is closed and in inclement weather.

8. BECOMING A TOMB GUARD IS INCREDIBLY DIFFICULT.

Members of the Old Guard must apply for the position. If chosen, the applicant goes through an intense training period, in which they must pass tests on weapons, ceremonial steps, cadence, military bearing, uniform preparation, and orders. Although military members are known for their neat uniforms, it’s said that the Tomb Guards have the highest standards of them all. A knowledge test quizzes applicants on their memorization—including punctuation—of 35 pages on the history of the Tomb. Once they’re selected, Guards “walk the mat” in front of the Tomb for anywhere from 30 minutes to two hours, depending on the time of year and time of day. They work in 24-hour shifts, however, and when they aren’t walking the mat, they’re in the living quarters beneath it. This gives the sentinels time to complete training and prepare their uniforms, which can take up to eight hours.

9. THE HONOR IS ALSO INCREDIBLY RARE.

The Tomb Guard badge is the least awarded badge in the Army, and the second least awarded badge in the overall military. (The first is the astronaut badge.) Tomb Guards are held to the highest standards of behavior, and can have their badge taken away for any action on or off duty that could bring disrespect to the Tomb. And that’s for the entire lifetime of the Tomb Guard, even well after his or her guarding duty is over. For the record, it seems that Tomb Guards are rarely female—only three women have held the post.

10. THE STEPS THE GUARDS PERFORM HAVE SPECIFIC MEANING.

Everything the guards do is a series of 21, which alludes to the 21-gun salute. According to TombGuard.org:

The Sentinel does not execute an about face, rather they stop on the 21st step, then turn and face the Tomb for 21 seconds. They then turn to face back down the mat, change the weapon to the outside shoulder, mentally count off 21 seconds, then step off for another 21 step walk down the mat. They face the Tomb at each end of the 21 step walk for 21 seconds. The Sentinel then repeats this over and over until the Guard Change ceremony begins.

SECTIONS
BIG QUESTIONS
BIG QUESTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES