CLOSE

It Came From Space! Man-Made Objects That Crashed Back to Earth

Most orbital debris is in low Earth orbit, where "what goes up must come down" — derelict satellites, spent rocket boosters, explosive bolt shrapnel, payload fairings, interstage structures, payload adapters, spin-up counterweights, and more. Most reentering debris is small and burns up on reentry. But some of it is large and survives reentry. Occasionally, people even find it. To date, no one is known to have been injured, and, statistically speaking, debris is most likely to fall over water. But it's really only a matter of time before someone does get hurt.

Here is a look at some of the more interesting man-made objects that have fallen from space.

Cosmos 954

The Soviet Union fielded an assortment of radar ocean reconnaissance spacecraft (RORSATs) powered not by solar arrays but by actual honest-to-gosh nuclear reactors. They were designed to eject their nuclear cores to a high, disposal orbit at the end of their lifetimes, but on at least one occasion, this did not happen. Cosmos 954's core was still on board when it reentered the atmosphere on January 24, 1978. Although another RORSAT with a similar predicament had wound up safely in the ocean, this one wasn't so lucky; highly radioactive debris was scattered across the Northwest Territories, Alberta, and Saskatchewan, Canada, on a 600 km path. The Soviets refused to acknowledge that any material had survived reentry until a joint US/Canadian recovery mission cleaned up the debris and billed the USSR more than six million Canadian dollars. (The USSR ultimately paid about half of that.) Most of the spacecraft's mass remained unaccounted for, however. This is a bit concerning since, of the 1% of fuel that was recovered, one fragment was so radioactive that a person holding it for a moment would receive a lethal dose.

Members of Operation Morning Light, wearing snowshoes and winter survival gear, use Geiger counters to locate debris.

Skylab

The most famous piece of space debris ever, this 69,000 kg space station had been built from an unused S-IVB upper stage from a Saturn V, and boosted into orbit by another Saturn V. Today, it holds the record for the third largest space station after the ISS and Mir. After consuming most of the remaining Apollo hardware, the station was abandoned, with the plan of sending the new Space Shuttle up to reboost it and periodically visit. The Sun had other ideas; solar activity puffed out the Earth's atmosphere, increasing drag, and Skylab fell from orbit largely uncontrolled on July 11, 1979. With the media and diplomatic channels awakened by the Cosmos 954 reentry, there was intense interest. NASA predicted 1 in 152 odds of striking a person. There was still some control over the spacecraft, so NASA attempted to control the reentry by adjusting the station's altitude. This worked, but the station took longer to burn than expected, and there was a 4% error in the calculation — it ended up hitting Australia, strewing debris across Western Australia southeast of Perth. It was the most massive object ever to reenter uncontrolled, tipping the scales at 85 tons. (The Mir space station was more massive, but made a controlled entry over the South Pacific.)


Fragment of Skylab, recovered from the crash site and displayed at the US Space and Rocket Center

Salyut 7

In the 1970s, the Soviet Union launched a series of space stations under the designation "Salyut." All of these heavy spacecraft eventually reentered, but the last of them (and the heaviest) was Salyut 7. Equipped with two docking ports to permit resupply and crew exchange, Salyut 7 had enjoyed a strong career starting in 1982. Near the end of its lifespan, an unmanned TKS spacecraft designated Cosmos 1686 arrived and docked to the station, expanding its pressurized volume and demonstrating the concept of modular stations in preparation for the launch of Mir the following year. In 1986, the first Mir crew made a brief trip to Salyut 7, the last to visit the station. It was then abandoned. On February 7, 1991, the station finally fell from orbit, reentering over Argentina and scattering debris near the town of Capitan Bermudez. With the TKS module attached, the combined system had a mass of 40,000 kg. Unlike its Salyut predecessors, its reentry was completely uncontrolled. More about the Salyut 7 debris, including the scientific analysis of a tank recovered from the crash site, is available here.

Delta II Upper Stage

Many upper stages have reentered through the years; in fact, rocket boosters constitute the majority of large space debris. Most are not observed, but many fragments have been found. In 1997, Ms. Lottie Williams of Tulsa, OK, was hit by a piece of one while she was out walking. It didn't injure her, and the piece was light and cool. It turned out to be fabric insulation from a Delta II rocket's upper stage, which had been launched in 1996 and floated derelict ever since. More of the debris was found downrange, in Texas. Williams is the only person definitively known to have been struck by a piece of reentering orbital debris. You can read more about Lottie Williams here, holding up her small scrap of insulation.


It could have been worse; this tank is from the same rocket, found downrange in Texas.

Columbia

February 1, 2003. STS-107 was Columbia's first flight in several years, having been sidelined while the other three Orbiters worked on ISS construction. She was scheduled to receive Discovery's Orbiter Docking System, so that she could take over missions while Discovery underwent a routine maintenance period. As she was aging, she was not expected to make many more flights; her last mission was tentatively placed for 2009, returning the Hubble Space Telescope from orbit. (More on that later.) The mission had been a complete success, and it was time to return home. Unbeknownst to NASA or the crew, a piece of foam insulation had punctured one of the reinforced carbon panels. During entry, hot plasma entered through this hole and melted through the aluminum ribs of the wing. The wing eventually tore away, and the entire vehicle rapidly broke up. Debris was scattered over hundreds of miles, and continues to be recovered to this day; last August, the continuing drought in Texas lowered the level of Lake Nacodoches sufficiently to reveal a tank from the fuel cell that provided Columbia with electrical power.


Recovered Columbia debris being identified, processed, and laid out for analysis by the accident investigation board.

Future Reentries

Low Earth orbit is full of objects, the vast majority inactive rocket parts, derelict spacecraft, and fragments. Reentries will keep on happening. The recently deactivated Rossi X-ray Timing Explorer has an estimated 1 in 1,000 chance of injuring a person. The Hubble Space Telescope has no means of returning to Earth under its own power; unless a robotic de-orbit system is developed in time, it will also return uncontrolled, with a 1 in 700 chance of injuring a person, largely due to its massive primary mirror.

Here's what's up there now, in low orbit and zoomed out to geosynchronous orbit. There's more going up all the time, so this will only get busier. Which one will come down next?



Cataloged objects in Low Earth Orbit and out to Geosynchronous Earth Orbit

nextArticle.image_alt|e
iStock
arrow
Space
Look Up! Residents of Maine and Michigan Might Catch a Glimpse of the Northern Lights Tonight
iStock
iStock

The aurora borealis, a celestial show usually reserved for spectators near the arctic circle, could potentially appear over parts of the continental U.S. on the night of February 15. As Newsweek reports, a solar storm is on track to illuminate the skies above Maine and Michigan.

The Northern Lights (and the Southern Lights) are caused by electrons from the sun colliding with gases in the Earth’s atmosphere. The solar particles transfer some of their energy to oxygen and nitrogen molecules on contact, and as these excited molecules settle back to their normal states they release light particles. The results are glowing waves of blue, green, purple, and pink light creating a spectacle for viewers on Earth.

The more solar particles pelt the atmosphere, the more vivid these lights become. Following a moderate solar flare that burst from the sun on Monday, the NOAA Space Weather Prediction Center forecast a solar light show for tonight. While the Northern Lights are most visible from higher latitudes where the planet’s magnetic field is strongest, northern states are occasionally treated to a view. This is because the magnetic North Pole is closer to the U.S. than the geographic North Pole.

This Thursday night into Friday morning is expected to be one of those occasions. To catch a glimpse of the phenomena from your backyard, wait for the sun to go down and look toward the sky. People living in places with little cloud cover and light pollution will have the best chance of spotting it.

[h/t Newsweek]

nextArticle.image_alt|e
Kevin Gill, Flickr // CC BY-2.0
arrow
Space
10 Facts About the Dwarf Planet Haumea
Kevin Gill, Flickr // CC BY-2.0
Kevin Gill, Flickr // CC BY-2.0

In terms of sheer weirdness, few objects in the solar system can compete with the dwarf planet Haumea. It has a strange shape, unusual brightness, two moons, and a wild rotation. Its unique features, however, can tell astronomers a lot about the formation of the solar system and the chaotic early years that characterized it. Here are a few things you need to know about Haumea, the tiny world beyond Neptune.

1. THREE HAUMEAS COULD FIT SIDE BY SIDE IN EARTH.

Haumea is a trans-Neptunian object; its orbit, in other words, is beyond that of the farthest ice giant in the solar system. Its discovery was reported to the International Astronomical Union in 2005, and its status as a dwarf planet—the fifth, after Ceres, Eris, Makemake, and Pluto—was made official three years later. Dwarf planets have the mass of a planet and have achieved hydrostatic equilibrium (i.e., they're round), but have not "cleared their neighborhoods" (meaning their gravity is not dominant in their orbit). Haumea is notable for the large amount of water ice on its surface, and for its size: Only Pluto and Eris are larger in the trans-Neptunian region, and Pluto only slightly, with a 1475-mile diameter versus Haumea's 1442-mile diameter. That means three Haumeas could fit sit by side in Earth—and yet it only has 1/1400th of the mass of our planet.

2. HAUMEA'S DISCOVERY WAS CONTROVERSIAL.

There is some disagreement over who discovered Haumea. A team of astronomers at the Sierra Nevada Observatory in Spain first reported its discovery to the Minor Planet Center of the International Astronomical Union on July 27, 2005. A team led by Mike Brown from the Palomar Observatory in California had discovered the object earlier, but had not reported their results, waiting to develop the science and present it at a conference. They later discovered that their files had been accessed by the Spanish team the night before the announcement was made. The Spanish team says that, yes, they did run across those files, having found them in a Google search before making their report to the Minor Planet Center, but that it was happenstance—the result of due diligence to make sure the object had never been reported. In the end, the IAU gave credit for the discovery to the Spanish team—but used the name proposed by the Caltech team.

3. IT'S NAMED FOR A HAWAIIAN GODDESS.

In Hawaiian mythology, Haumea is the goddess of fertility and childbirth. The name was proposed by the astronomers at Caltech to honor the place where Haumea's moon was discovered: the Keck Observatory on Mauna Kea, Hawaii. Its moons—Hi'iaka and Namaka—are named for two of Haumea's children.

4. HAUMEA HAS RINGS—AND THAT'S STRANGE.

Haumea is the farthest known object in the solar system to possess a ring system. This discovery was recently published in the journal Nature. But why does it have rings? And how? "It is not entirely clear to us yet," says lead author Jose-Luis Ortiz, a researcher at the Institute of Astrophysics of Andalusia and leader of the Spanish team of astronomers who discovered Haumea.

5. HAUMEA'S SURFACE IS EXTREMELY BRIGHT.

In addition to being extremely fast, oddly shaped, and ringed, Haumea is very bright. This brightness is a result of the dwarf planet's composition. On the inside, it's rocky. On the outside, it is covered by a thin film of crystalline water ice [PDF]—the same kind of ice that's in your freezer. That gives Haumea a high albedo, or reflectiveness. It's about as bright as a snow-covered frozen lake on a sunny day.

6. HAUMEA HAS ONE OF THE SHORTEST DAYS IN THE ENTIRE SOLAR SYSTEM.

If you lived to be a year old on Haumea, you would be 284 years old back on Earth. And if you think a Haumean year is unusual, that's nothing next to the length of a Haumean day. It takes 3.9 hours for Haumea to make a full rotation, which means it has by far the fastest spin, and thus shortest day, of any object in the solar system larger than 62 miles.

7. HAUMEA'S HIGH SPEED SQUISHES IT INTO A SHAPE LIKE A RUGBY BALL.

haumea rotation gif
Stephanie Hoover, Wikipedia // Public Domain

As a result of this tornadic rotation, Haumea has an odd shape; its speed compresses it so much that rather than taking a spherical, soccer ball shape, it is flattened and elongated into looking something like a rugby ball.

8. HIGH-SPEED COLLISIONS MAY EXPLAIN HAUMEA'S TWO MOONS.

Ortiz says there are several mechanisms that can have led to rings around the dwarf planet: "One of our favorite scenarios has to do with collisions on Haumea, which can release material from the surface and send it to orbit." Part of the material that remains closer to Haumea can form a ring, and material further away can help form moons. "Because Haumea spins so quickly," Ortiz adds, "it is also possible that material is shed from the surface due to the centrifugal force, or maybe small collisions can trigger ejections of mass. This can also give rise to a ring and moons."

9. ONE MOON HAS WATER ICE—JUST LIKE HAUMEA.

Ortiz says that while the rings haven't transformed scientists' understanding of Haumea, they have clarified the orbit of its largest moon, Hi'iaka—it is equatorial, meaning it circles around Haumea's equator. Hi'iaka is notable for the crystalline water ice on its surface, similar to that on its parent body.

10. TRYING TO SEE HAUMEA FROM EARTH IS LIKE TRYING TO LOOK AT A COIN MORE THAN 100 MILES AWAY.

It's not easy to study Haumea. The dwarf planet, and other objects at that distance from the Sun, are indiscernible to all but the largest telescopes. One technique used by astronomers to study such objects is called "stellar occultation," in which the object is observed as it crosses in front of a star, causing the star to temporarily dim. (This is how exoplanets—those planets orbiting other stars—are also often located and studied.) This technique doesn't always work for objects beyond the orbit of Neptune, however; astronomers must know the objects' orbits and the position of the would-be eclipsed stars to astounding levels of accuracy, which is not always the case. Moreover, Ortiz says, their sizes are oftentimes very small, "comparable to the size of a small coin viewed at a distance of a couple hundred kilometers."

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios