Why Utah Loves Seagulls (but not crickets)

iStock / gjohnstonphoto
iStock / gjohnstonphoto

Drivers out West may have experienced the terror of swarming Mormon Crickets, which can overwhelm roads all at once and make streets so slick that drivers lose their grip. The threat of the crickets -- who swarm because their natural cannibalistic tendency creates chaos during mass migrations -- is so great that drivers say they've even seen the roads turn red with blood from the crushed insects.

But those swarming crickets also explain why Utah loves its gulls, and how the Mormon Cricket got its name, despite not even being a cricket.

Mormon settlers in Utah thought they had seen the worst of it in 1848 when a late April frost threatened to wipe out their crops. But, in late May, a swarm of the crickets amassed on the fields, threatening to eat anything in their path. The crickets (which are actually in the katydid family) cannot fly and are known to devour any plants. The settlers were completely overwhelmed, especially because they discovered that crushing the bugs would only attract more. Some of the settlers even began comparing the attack to the biblical plague of the locusts, with journals recalling darkened skies and settlers resorting to eating wolves and other wild animals.

Then, according to the story, thousands of gulls descended on the fields and began eating the crickets. The legend says that the gulls even had to stop to vomit up the crickets before going back for more, eating until they had chased the bugs off. The late arrival of the birds ended up saving the crops and ensuring the settlers survival. The so-called "Miracle of the Gulls" became a legend in Salt Lake City, with the California Gull being named the Utah state bird and a monument to the birds being built outside of Salt Lake Assembly Hall.

However, there is some question as to how accurate the legend of the 1848 Cricket War actually is. In journals from the time, there are actually only scattered mentions of the gull's arrival, which historians say could indicate that those were isolated incidents. In fact, most historians believe that the settlers were much more pro-active and set up reinforcements to ward off the crickets themselves.

Plus, it's not uncommon at all for the gulls to eat the katydids, according to ornithologists. In fact, it's still going on today.

The insects also remain a threat, and not just to drivers. The crickets continue to eat at crops and other plants, even causing more than $25 million in a 2003 infestation. However, farmers have come up with a new method of fighting them off that doesn't involve seagulls. Some have been blasting rock music around their fields, which apparently has kept the crickets at bay.

Why Do Bats Hang Upside Down?

iStock.com/CraigRJD
iStock.com/CraigRJD

Stefan Pociask:

The age-old question of upside down bats. Yes, it is awfully weird that there is an animal—a mammal even—that hangs upside down. Sure, some monkeys do it when they're just monkeying around. And a few other tree climbers, like margays, hang upside down if they are reaching for something or—again, like the margay cat—may actually even hunt that way ... But bats are the only animals that actually spend most of their time hanging upside down: feeding this way, raising their young this way, and, yes, sleeping or roosting this way.

There is actually a very good and sensible reason why they do this: They have to hang upside down so that they can fly.

First off, we have to acknowledge that bats are not birds, nor are they insects. These are the other two animals that have true powered flight (as opposed to gliding). The difference between bat flight and bird or insect flight is weight—specifically, the ratio of weight to lift-capacity of the wings. If you walk up to a bird or insect, most species will be able to fly right up into the air from a motionless position, and do it quickly.

Bats, on the other hand (or, other wing), can’t do that. They have a lot of difficulty taking off from the ground (not that they can’t do it ... it’s just more difficult). Insects and birds often actually jump into the air to give them a start in the right direction, then their powerful wings take them up, up, and away.

Birds have hollow bones; bats don’t. Insects are made of lightweight chitin or soft, light tissue; bats aren’t. And bats don’t have what you could call "powerful" wings. These amazing creatures are mammals, after all. The only flying mammals. Nature found a way to evolve such an unlikely thing as a flying mammal, so some compromises had to be made. Bats, once airborne, manage perfectly well in the air, and can literally fly circles around most birds in flight. The problem is in first getting off the ground.

To compensate for the extra weight that mammals must have, to compensate for the problem of getting off the ground, evolution found another way for bats to transition from being motionless to immediately being able to fly when necessary. Evolution said, “How about if we drop them from above? That way they are immediately in the air, and all they need to do is start flapping."

It was a great idea, as it turns out. Except bat feet aren’t any good for perching on a branch. They are mammals, not birds, so their musculature, their bones, and their tendons are set up in a completely different way. When a bird squats down on a branch, their tendons actually lock their toes into an even tighter grip on the perch. It happens automatically. That’s part of being a bird, and is universal. That’s why they don’t fall off in their sleep.

Bats, as mammals, are set up differently. Therefore, to compensate for that fact, nature said, “How about if we have them hang upside down? That way, their tendons will actually pull their toes closed, just like a bird does from the opposite direction.” So that’s what evolved. Bats hang from the bottom of something, and all they have to do is "let go" and they are instantly flying. In fact, with this gravity-assist method, they can achieve instant flight even faster than birds, who have to work against gravity.

Side note: In case you were wondering how bats poop and pee while upside down ... First off, pooping is no big deal. Bat poop looks like tiny grains of rice; if they are hanging, it just falls to the floor of the bat cave as guano. Pee, however ... well, they have that covered too. They just “hold it” until they are flying.

So there you go. Bats sleep hanging upside down because they are mammals and can’t take off into the air like birds can (at least not without difficulty). But, if they're hanging, all they do is let go.

Makes total sense, right?

Now, having said all that about upside down bats, I must mention the following: Not all of the 1240-plus species of bats do hang upside down. There are exceptions—about six of them, within two different families. One is in South America (Thyropteridae) and the other is in Madagascar (Myzopodidae). The Myzopodidae, which includes just one species, is exceedingly rare.

So it turns out that these bats roost inside the tubes of young, unfurled banana leaves and other similar large leaves. When they attach themselves to the inside of this rolled leaf, they do it head-up. The problem with living inside of rolled-up leaves is that within a few days, these leaves will continue growing, and eventually open up. Whenever that happens, the whole group of bats has to pick up and move to another home. Over and over again. All six of these species of rare bats have a suction cup on each wrist and ankle, and they use these to attach to the smooth surface of the inside of the leaf tube. Evolution: the more you learn, the more amazing it becomes.

This post originally appeared on Quora. Click here to view.

Sorry, But Last Month's Polar Vortex Didn't Wipe Out 95 Percent of Stink Bugs

iStock.com/drnadig
iStock.com/drnadig

In the wake of the polar vortex that brought bone-chilling temperatures to the Midwest and Northeast U.S. last month, a silver lining appeared to emerge. Multiple media outlets recently reported that the weather phenomenon may have wiped out as many as 95 percent of brown marmorated stink bugs in areas that weren't accustomed to such frigid conditions.

Unless you like having your home smell like the musky, burnt-cilantro scent of squished stink bugs, we have some bad news: Those reports are not entirely accurate. According to KDKA Radio in Pittsburgh, the Virginia Tech lab experiment that has been widely cited in these articles is a little outdated, having been conducted in 2014.

At the time, it appeared to be a promising find. Researchers from the university had collected stink bugs, placed them in insulated buckets, and waited to see if they'd survive a particularly cold spell. Even though the insects were in a dormant state called diapause, 95 percent of them died when a polar vortex hit the region. That led entomology professor Thomas Kuhar to tell The Washington Post in 2014 that “there should be significant mortality of BMSB (brown marmorated stink bugs) and many other overwinter insects this year."

However, in an email to Mental Floss, Kuhar says the rehashing of "some media misquotes from 2014" led to these too-good-to-be-true reports being recirculated this week. "There is no new research on this topic," he writes. Furthermore, the lab experiment can't easily be applied to real-life scenarios because stink bugs tend to seek shelter during the winter. "Severe sub-freezing temperatures will negatively impact winter survival of these stink bugs if they were unable to find suitable shelter such as inside of houses and sheds," he writes.

These sentiments were echoed by entomologist Chad Gore of Ehrlich Pest Control, who spoke with KDKA Radio. "When they can find that shelter, they can survive the winter. Those that are exposed, they will freeze and we won’t have to worry about them," he said.

But is there still a chance we will see fewer stink bugs in the spring? Gore says don't count on it. "I’d love to be able to reassure everybody and say that 95 percent of all of our stink bugs are going to be gone, but that’s just not going to be the case," he said. "We’re still going to see them."

Even though stink bugs don't bite and are basically harmless (though they sometimes trigger allergic reactions), they can be difficult to trap once they've found a way into one's house. The invasive species is also harmful to crops—especially grapes—and sometimes end up getting pulverized and fermented in red wine. Suffice it to say, a lot of people would be happy if the pests suddenly disappeared. For now, though, we'll have to keep on dreaming.

[h/t KDKA Radio]

SECTIONS

arrow
LIVE SMARTER