CLOSE

Where Are They Now? Diseases That Killed You in Oregon Trail

You have died of dysentery.

These are five words familiar to anyone who has attempted to caulk a wagon and ford rivers en route to the Willamette Valley. Oregon Trail not only taught generations of kids about Western migration in 19th-century America, it also familiarized them with various strange-sounding diseases. Let’s catch up with some of those diseases and find out if they're just as nasty today.

1. Everyone Has Cholera

Then: The number one killer of the actual Oregon Trail, cholera is an infection of the intestines caused by ingesting the bacteria Vibrio cholerae. Spread through contaminated food or water, cholera released an enterotoxin that effectively flooded the intestines with excess water. This led to continual watery diarrhea, causing severe dehydration and often death. The worst outbreaks occurred on the Oregon Trail in 1849, 1850 and 1852. The only available treatment in the game was a medicine known as laudanum—understood today to be pure opium.

Now: According to the Centers for Disease Control, cholera remains a global pandemic. Though there is still no vaccine for the disease (in the U.S.), it can be treated with a regimen of fluids and electrolytes, as well as antibiotics. The best defense remains stringent sanitation regulations, a luxury afforded primarily to industrialized countries. The World Health Organization has recorded recent outbreaks in Mexico (November 2013), Sierra Leone (August 2012), Democratic Republic of Congo (July 2011), Haiti (November 2010, October 2010), Pakistan (October 2010) and a severe outbreak in Zimbabwe (June 2009, March 2009, February 2009, January 2009, December 2008).

2. Joseph Has Diphtheria

Then: Caused by Corynebacterium diphtheriae, diphtheria is an airborne bacterial disease. It usually showed up first in the nose and throat, but could also surface as skin lesions. A gray, fibrous material would grow over airways, causing difficulty breathing and sometimes uncontrollable drooling, as well as a deep cough and chills. Diphtheria was most common on the Trail during the winter months.

Now: Routine childhood immunizations have nearly erased diphtheria in the U.S. According to the U.S. National Library of Medicine, there are less than five cases here a year. Though it is still a problem in crowded nations with poor hygiene, diphtheria is now rarely fatal.

3. You Have Dysentery

Then: Dysentery, a.k.a. shigellosis, was not as widespread on the trails as its peer cholera. During the 19th century, dysentery was a bigger problem on the Civil War battlefields. Like cholera, dysentery spread via contaminated water and food, thriving in hot and humid weather. Unlike cholera, dysentery lived in the colon and caused bloody, loose excrement. The rise of dysentery in the 1800s was partially due to infected warm cow’s milk, an ideal incubator for shigellosis.

Now: Dysentery is still a major threat to the developing world. Not only is there no effective vaccine, recent strains are increasingly resistant to antibiotics—the only proven line of defense in tandem with fluids. 

4. Sally Has Measles

Then: Evolved from the rinderpest virus, the highly contagious measles ravaged the United States in the 19th century. It was not measles, but complications like bronchitis and pneumonia, that made it life threatening. Measles was spread through contaminated droplets—coughing, sneezing, wiping one’s nose and then touching anything. It caused nasty rashes, fever, and conjunctivitis.

Now: A vaccine was discovered in the mid-20th century, virtually eradicating measles from the developed world. It is now part of the trifecta inoculation MMR (Measles-Mumps-Rubella) most American children receive in infancy and again at age 6. Though relatively contained, measles is still endemic: In 2009, there was an outbreak in Johannesburg and other parts of South Africa. New Zealand saw a small spike in August 2011, with nearly 100 cases popping up in Auckland. And as of May 16, 2014, there have been 15 outbreaks in the U.S., resulting in 216 cases of measles in 18 states, "the highest number of cases reported in the United States during this time period in 18 years," Dr. Greg Wallace, head of measles activities at the Centers for Disease Control and Prevention, told CNN. (Notably, that number doesn't include the latest cases from an outbreak in Ohio.) Most of the people who got measles were unvaccinated and got the disease while traveling; measles then spread among unvaccinated members of the community when the travelers returned home.

5. Mary Has Died of Typhoid Fever

Then: Unfamiliar with the virtues of boiling water first, Oregon Trail pioneers contracted typhoid like many other diseases—from contaminated water. Caused by Salmonella Typhi, typhoid was spread when an infected person “sheds” the bacteria. Sparing you the gross details, let’s just say the bacteria lived in a person’s blood and intestines. The major symptom was high fever, followed by weakness and loss of appetite. In the warmer months, typhoid was a real killer.

Now: Still a killer, though not in the Western world. The CDC says it’s preventable with good sanitation and antibiotics, but even Westerners are not immune when traveling in developing countries. The CDC strongly recommends anyone planning travel to a "non-industrialized" nation get vaccinated—and avoid any tap water or food cooked in unclean water.

This story originally appeared in 2011.

nextArticle.image_alt|e
Scientific Reports, Fernando Ramirez Rozzi
arrow
Stones, Bones, and Wrecks
Humans Might Have Practiced Brain Surgery on Cows 5000 Years Ago
Scientific Reports, Fernando Ramirez Rozzi
Scientific Reports, Fernando Ramirez Rozzi

In the 1970s, archaeologists discovered a site in France containing hundreds of cow skeletons dating back 5000 to 5400 years. The sheer number wasn't surprising—human agriculture in that part of the world was booming by 3000 BCE. What perplexed scientists was something uncovered there a few decades later: a cow skull bearing a thoughtfully drilled hole. Now, a team of researchers has released evidence that suggests the hole is an early example of animal brain surgery.

Fernando Ramírez Rozzi, a paleontologist with the French National Center for Scientific Research, and Alain Froment, an anthropologist at the Museum of Mankind in Paris, published their findings in the journal Nature Scientific Reports. After comparing the opening to the holes chiseled into the skulls of humans from the same era, they found the bones bore some striking similarities. They didn't show any signs of fracturing from blunt force trauma; rather, the hole in the cow skull, like those in the human skulls, seemed to have been carved out carefully using a tool made for exactly that purpose. That suggests that the hole is evidence of the earliest known veterinary surgery performed by humans.

Trepanation, or the practice of boring holes into human skulls, is one of the oldest forms of surgery. Experts are still unsure why ancient humans did this, but the level of care that went into the procedures suggests that the surgery was likely used to treat sick patients while they were still alive. Why a person would perform this same surgery on a cow, however, is harder to explain.

The authors present a few theories, the first being that these ancient brain surgeons were treating a sick cow the same way they might treat a sick human. If a cow was suffering from a neural disease like epilepsy, perhaps they though that cutting a hole in its head would relieve whatever was agitating the brain. The cow would have needed to be pretty special to warrant such an effort when there were hundreds of healthy cows living on the same plot of land, as evidenced by the skeletons it was found with.

Another possible explanation was that whoever operated on the cow did so as practice to prepare them for drilling into the heads of live humans one day. "Cranial surgery requires great manual dexterity and a complete knowledge of the anatomy of the brain and vessel distribution," the authors write in the study. "It is possible that the mastery of techniques in cranial surgery shown in the Mesolithic and Neolithic periods was acquired through experimentation on animals."

Either way, the bovine patient didn't live to see the results of the procedure: The bone around the hole hadn't healed at all, which suggests the cow either died during surgery or wasn't alive to begin with.

nextArticle.image_alt|e
iStock
arrow
science
8 Unexpected Activities People Have Done in MRI Scanners for Science
iStock
iStock

In medicine, magnetic resonance imaging (MRI) uses powerful magnetic fields and radio waves to show what's happening inside the body, producing dynamic images of our internal organs. Using similar technology that tracks blood flow, functional magnetic resonance imaging (fMRI) scans can show neuroscientists neural activity, indicating what parts of the brain light up when, for instance, a person thinks of an upsetting memory or starts craving cocaine. Both require staying within a massive MRI machine for the length of the scan.

There's some controversy over how scientists interpret fMRI data in particular—fMRI studies are based on the idea that an increase of blood flow to a region of the brain means more cellular activity there, but that might not be a completely accurate measure, and a 2016 report found that fMRI studies may have stunning rates of false positives.

But we're not here to talk about results. We're here to talk about all the weird, weird things scientists have asked people to do in MRI machines so that they could look at their brains and bodies. From getting naked to going to the bathroom, people have been willing to do some unexpected activities in the name of science. Here are just a few of the oddest things that people have done in scanners at the behest of curious researchers.

1. SING OPERA

Researchers once invited world-famous opera singer Michael Volle to sing inside an MRI at the University of Freiburg in Germany. The baritone sang a piece from Richard Wagner's opera Tannhäuser as part of a 2016 study on how the vocal tract moves during singing at different pitches and while changing volume. The study asked 11 other professional singers with different voice types to participate as well. They found that the larynx rose with a singer's pitch, but got lower as the song got louder, and that certain factors, like how open their lips were, correlated more with how loud the singer was than how high they were singing. The scientists concluded that future research on the larynx and the physical aspects of singing should take loudness into consideration.

That study wasn't the first to take MRI images of singers. In 2015, researchers at the University of Illinois demonstrated their technique for recording dynamic MRI imaging of speech using video of U of I speech specialist Aaron Johnson singing "If I Only Had a Brain" from The Wizard of Oz.

2. REACT TO ROBOT-DINOSAUR ABUSE

Stills of a video in which a robot gets petted or beaten by a human
Stills from the videos participants watched of robot dinosaurs being treated kindly or unkindly.
Rosenthal-von der Pütten et al., Computers in Human Behavior (2014)

To test whether or not humans can feel empathy with robots for a 2013 study, researchers put participants into an fMRI machine and made them watch videos of humans and robotic dinosaurs. The videos either included footage of the human or robot being stroked or tickled, or the subject being beaten and choked. The brain scans showed similar activity for people viewing both videos, suggesting that people might be able to feel similar empathy for robots as for people.

3. PLAY VIDEO GAMES WITH A MEAN-SPIRITED A.I.

Two brain scans
Eisenberger et al., Science (2003)

To see whether the brain responds to emotional pain in similar ways to physical pain, researchers asked participants in a 2003 study to experience social rejection within an fMRI machine. During the scans, participants played a virtual ball-tossing game against two other players—whom they believed to be other study participants in other scanners—by watching a screen through goggles and pressing one of two keys to toss the ball to one of the other players. They were actually playing against a computer that was programmed to eventually exclude the human player. At some point during the game, the computer-controlled players stopped throwing the human player the ball, causing them to feel excluded and ignored. The researchers found that the excluded study subjects showed brain activation in regions similar to the ones seen in studies of physical pain.

4. POOP

Watching people poop through MRI imaging is a surprisingly common medical technique. It's called magnetic resonance defecography. Doctors use it to diagnose issues with rectal function, analyzing how the muscles of the pelvis are working and the cause of bowel issues. The scan involves having ultrasound jelly and a catheter inserted into your butt, donning a diaper, and crawling inside an MRI scanner. Then, on command, you clench your pelvic muscles in various ways as ordered by the doctor, eventually resulting in pooping out the ultrasound jelly and whatever else you might need to evacuate. No pressure.

5. HAVE SEX …

MRI of a woman before, pre-, and after orgasm
MRI images of a woman at rest, in a pre-orgasmic phase, and 20 minutes after orgasm (L–R)
Schultz et al. in BMJ, 1999

Scientists have also recorded MRI body scans of couples having sex. In the late '90s, Dutch researcher Pek Van Andel and his colleagues at the University Hospital Groningen asked eight couples to come into their lab on a Saturday and have sex in the tube of an MRI scanner in order to analyze how genitals fit together during heterosexual intercourse. Despite the surroundings, they apparently had a fine time. "The subjective level of sexual arousal of the participants, men and women, during the experiment was described afterwards as average," the study noted.

Meanwhile, other researchers are trying to capture scientific images of sex in different, sometimes even more awkward ways. For her 2008 book Bonk: The Curious Coupling Of Sex And Science, science writer Mary Roach and her husband had sex in a lab at University College London while a researcher stood next to them and held an ultrasound wand to her abdomen.

6. … AND HAVE ORGASMS

Scan of a woman's brain during orgasm
Wise et al., The Journal of Sexual Medicine (2017)

Scientists still don't know all that much about how orgasms work, so various studies have asked participants to come into the lab, lay down in an fMRI scanner, and stimulate themselves to orgasm. (A reporter at Inside Jersey went to Rutgers to take part in the university's orgasm research herself in 2010. She brought her own sex toy, but the lab was kind enough to provide the lube.)

Over the course of their work, Rutgers researchers have found that when people bring themselves to orgasm within an fMRI machine, it activates more than 30 brain systems, including ones that you wouldn't think would be involved in getting off, like the prefrontal cortex, which is associated with problem solving and judgment.

7. COMPOSE MUSIC

A musical score with just a few notes on it
Lu et al., Scientific Reports (2015)

Singers aren't the only music professionals to get inside an fMRI machine for science. For a study published in 2015, 17 young composers were asked to create a piece of music while Chinese researchers examined their brain activity. While all of them played the piano, they were asked to compose a piece for an instrument none of them know how to play—the zheng, a traditional Chinese string instrument. They were given a musical staff with just a few introductory notes already written as inspiration and asked to come up with something from there. As soon as they exited the scanner, they wrote down the notes they had imagined during the imaging process. The researchers found that the composers' visual and motor cortex showed less activity than usual, the opposite of what researchers have seen in studies of musical improvisation.

8. HAVE AN OUT-OF-BODY EXPERIENCE

Four brain scans with different areas of the brain lit up in red, yellow, and orange
Activated portions of the brain during an out-of-body experience
Smith and Messier, Frontiers in Human Neuroscience (2014)

In a 2014 study, psychologists at the University of Ottawa recruited an undergraduate student who reported that she could have out-of-body experiences at will to do so within the confines of an fMRI scanner.

"She was able to see herself rotating in the air above her body, lying flat, and rolling along with the horizontal plane," the researchers wrote. "She reported sometimes watching herself move from above but remained aware of her unmoving 'real' body."

She entered the scanner six times, reporting out-of-body experiences that included feeling as if she were above her body and spinning or rocking side-to-side. The researchers found that the experience activated regions of her brain associated with kinesthetic imagery, the feeling of visualizing movement (as athletes often do during training and competitions, for instance), and a deactivated the visual cortex.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios