CLOSE
Original image
Thinkstock

What 11 Pairs of Eyeballs Watching a Movie Looks Like

Original image
Thinkstock

This is not only really cool, but it has striking implications for makers of film and TV. Using a technology called Eyelink, which uses an infrared camera to track the movement of a viewer’s pupil once every millisecond, film theorists analyzed how a test group of eleven viewers watched scenes from various films. The results revealed some very interesting bits of data: first, just how quickly our eyes move around the screen, even while we’re watching a scene that’s fairly static — about once every 1/3rd second. Another interesting finding was just how synchronized the roving gaze of eleven viewers actually was — in a phenomenon they call attentional synchrony, something about movement in a scene leads to all viewers looking at the same place on the screen at the same time.

They use the following scene from There Will Be Blood as an example. There are only a few cuts; it’s mostly long master takes, which makes it easy to see how changes in the scene itself, rather than edits, re-direct viewers’ attention. It’s hypnotizing and slightly surreal to watch a scene along with the eyeballs of eleven other people.

There Will Be Blood with gaze locations of 11 viewers from TheDIEMProject on Vimeo.

So what can we take away from all this? If you happen to be a filmmaker, plenty: mainly that there are lots of effective and satisfying ways to direct and manipulate the gaze of an audience member other than close-ups, reverse shots, etc. You can do all of that in a single shot, by moving the actors rather than the camera. David Bordwell analyzes the attentional synchrony of the scene beat-by-beat in this article, but here’s the takeaway:

Viewers’ gazes are attracted by the sudden appearance of objects, moving hands, heads, and bodies. The greater the motion contrast between the point of motion and the static background, the more likely viewers will look at it. If there is only one point of motion at a particular moment, then all viewers will look at the motion, creating attentional synchrony.

By minimising background distractions and staging the scene in a clear sequential manner using basic principles of visual attention, P. T. Anderson has created a scene which commands viewer attention as precisely as a rapidly edited sequence of close-up shots. The benefit of using a single long shot is the illusion of volition. Viewers think they are free to look where they want but, due to the subtle influence of the director and actors, where they want to look is also where the director wants them to look. A single static long shot also creates a sense of space, clear relationship between the characters, and a calm, slow pace which is critical for the rest of the film. The same scene edited into close-ups would have left the viewer with a completely different interpretation of the scene.

And that’s today’s lesson in film directing 101!

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Opening Ceremony
fun
arrow
These $425 Jeans Can Turn Into Jorts
May 19, 2017
Original image
Opening Ceremony

Modular clothing used to consist of something simple, like a reversible jacket. Today, it’s a $425 pair of detachable jeans.

Apparel retailer Opening Ceremony recently debuted a pair of “2 in 1 Y/Project” trousers that look fairly peculiar. The legs are held to the crotch by a pair of loops, creating a disjointed C-3PO effect. Undo the loops and you can now remove the legs entirely, leaving a pair of jean shorts in their wake. The result goes from this:

501069-OpeningCeremony2.jpg

Opening Ceremony

To this:

501069-OpeningCeremony3.jpg

Opening Ceremony

The company also offers a slightly different cut with button tabs in black for $460. If these aren’t audacious enough for you, the Y/Project line includes jumpsuits with removable legs and garter-equipped jeans.

[h/t Mashable]

SECTIONS
BIG QUESTIONS
BIG QUESTIONS
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES