CLOSE
Original image

How Did the Duck Hunt Gun Work?

Original image

For many children of the '80s, a good portion of your childhood probably revolved around sitting too close to the TV, clutching a plastic safety cone-colored hand gun and blasting waterfowl out of a pixilated sky in Duck Hunt (also, trying to blow that dog’s head off when he laughed at you). The Duck Hunt gun, officially called the Nintendo Entertainment System (NES) Zapper, seems downright primitive next to the Nintendo’s Wii and Microsoft’s Kinect, but in the late 80s, it filled plenty of young heads with wonder. How did that thing work?

Annie get your Zapper

The Zapper’s ancestry goes back to the mid 1930s, when the first so-called “light guns” appeared after the development of light-sensing vacuum tubes. In the first light gun game, Ray-O-Lite (developed in 1936 by Seeburg, a company that made parts and systems for jukeboxes), players shot at small moving targets mounted with light sensors using a gun that emitted a beam of light. When the beam struck a sensor, the targets – ducks, coincidentally – registered the “hit” and a point was scored.

Light guns hit home video game consoles with Shooting Gallery on the Magnavox Odyssey in 1972. Because the included shotgun-style light gun was only usable on a Magnavox television, the game flopped. The Nintendo Entertainment System (NES) Zapper then fell into the hands of American kids in October 1985, when it was released in a bundle with the NES, a controller and a few games. Early versions of the peripheral were dark gray, but the color of the sci-fi ray gun-inspired Zapper was changed a few years later when a federal regulation required that toy and imitation firearms be “blaze orange” (color #12199, to be exact) so they wouldn’t be mistaken for the real deal.

While there were a number of Zapper-compatible games released for the NES (when I was a kid and my dad worked from home, we wasted plenty of afternoons away playing Hogan’s Alley), most lived in the shadow of the iconic Duck Hunt, the most recognizable and popular Zapper game.

Gone in a Flash

While older light guns like the Ray-O-Lite rifle emitted beams of light, the Zapper and many other recent light guns work by receiving light through a photodiode on or in the barrel and using that light to figure out where on the TV screen you're aiming.

When you point at a duck and pull the trigger, the computer in the NES blacks out the screen and the Zapper diode begins reception. Then, the computer flashes a solid white block around the targets you’re supposed to be shooting at. The photodiode in the Zapper detects the change in light intensity and tells the computer that it’s pointed at a lit target block — in others words, you should get a point because you hit a target. In the event of multiple targets, a white block is drawn around each potential target one at a time. The diode’s reception of light combined with the sequence of the drawing of the targets lets the computer know that you hit a target and which one it was. Of course, when you’re playing the game, you don’t notice the blackout and the targets flashing because it all happens in a fraction of a second.

This target flashing method helped Nintendo overcome a weakness of older light gun games: cheaters racking up high scores by pointing the gun at a steady light source, like a lamp, and hitting the first target right out of the gate.

If you’re hungry for a more technical depth, check out Nintendo's 1989 patent on the Zapper technology

Original image
iStock
arrow
Big Questions
How Does Autopilot Work on an Airplane?
Original image
iStock

How does autopilot work on an airplane?

Joe Shelton:

David Micklewhyte’s answer is a good one. There are essentially a few types of features that different autopilots have. Some autopilots only have some of these features, while the more powerful autopilots do it all.

  • Heading Hold: There’s a small indicator that the pilot can set on the desired heading and the airplane will fly that heading. This feature doesn’t take the need for wind correction to desired routing into account; that’s left to the pilot.
  • Heading and Navigation: In addition to holding a heading, this version will take an electronic navigation input (e.g. GPS or VOR) and will follow (fly) that navigation reference. It’s sort of like an automated car in that it follows the navigator’s input and the pilot monitors.
  • Altitude Hold: Again, in addition to the above, a desired altitude can be set and the aircraft will fly at that altitude. Some autopilots have the capability for the pilot to select a desired altitude and a climb or descent rate and the aircraft will automatically climb or descend to that altitude and then hold the altitude.
  • Instrument Approaches: Autopilots with this capability will fly preprogrammed instrument approaches to the point where the pilot either takes control and lands or has the autopilot execute a missed approach.

The autopilot is a powerful computer that takes input from either the pilot or a navigation device and essentially does what it is told to do. GPS navigators, for example, can have a full flight plan entered from departure to destination, and the autopilot will follow the navigator’s guidance.

These are the majority of the controls on the autopilot installed in my airplane:

HDG Knob = Heading knob (Used to set the desired heading)

AP = Autopilot (Pressing this turns the autopilot on)

FD = Flight Director (A form of navigational display that the pilot uses)

HDG = Heading (Tells the autopilot to fly the heading set by the Heading Knob)

NAV = Tells the autopilot to follow the input from the selected navigator

APR = Tells the autopilot to fly the chosen approach

ALT = Tells the autopilot to manage the altitude, controlled by the following:

VS = Vertical Speed (Tells the autopilot to climb or descend at the chosen rate)

Nose UP / Nose DN = Sets the climb/descent rate in feet per minute

FLC = Flight Level Change (An easy manual way to set the autopilot)

ALT Knob = Used to enter the desired altitude

This post originally appeared on Quora. Click here to view.

Original image
iStock
arrow
Big Questions
What's the Difference Between Vanilla and French Vanilla Ice Cream?
Original image
iStock

While you’re browsing the ice cream aisle, you may find yourself wondering, “What’s so French about French vanilla?” The name may sound a little fancier than just plain ol’ “vanilla,” but it has nothing to do with the origin of the vanilla itself. (Vanilla is a tropical plant that grows near the equator.)

The difference comes down to eggs, as The Kitchn explains. You may have already noticed that French vanilla ice cream tends to have a slightly yellow coloring, while plain vanilla ice cream is more white. That’s because the base of French vanilla ice cream has egg yolks added to it.

The eggs give French vanilla ice cream both a smoother consistency and that subtle yellow color. The taste is a little richer and a little more complex than a regular vanilla, which is made with just milk and cream and is sometimes called “Philadelphia-style vanilla” ice cream.

In an interview with NPR’s All Things Considered in 2010—when Baskin-Robbins decided to eliminate French Vanilla from its ice cream lineup—ice cream industry consultant Bruce Tharp noted that French vanilla ice cream may date back to at least colonial times, when Thomas Jefferson and George Washington both used ice cream recipes that included egg yolks.

Jefferson likely acquired his taste for ice cream during the time he spent in France, and served it to his White House guests several times. His family’s ice cream recipe—which calls for six egg yolks per quart of cream—seems to have originated with his French butler.

But everyone already knew to trust the French with their dairy products, right?

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios