CLOSE

TONIGHT: President Obama on MythBusters

Tonight at 9pm ET/PT: The MythBusters tackle, once and for all, the "Archimedes Solar Ray" myth! Set your DVRs for the Discovery Channel.

Way back in 2004, the MythBusters first tried out the "Archimedes Solar Ray" myth. The myth essentially was (quoting an excellent writeup at The Annotated MythBusters):

Myth: At the seige of Syracuse in 212 BC (during the Second Punic Wars), Archimedes built his 'burning mirrors,' which was an arrangement of mirrors that was capable of focusing a ray of sunshine on approaching ships and setting them aflame.

In 2004, they failed to replicate this effect and called the myth busted. Viewers cried foul, and a group from MIT claimed they had in fact created an array of mirrors that set a boat on fire. So the next year, the MythBusters encouraged various viewers to come on the show and do it themselves -- including the MIT class. Well, as The Annotated MythBusters says, this second series of attempts also failed. (I urge you to read the writeup of this second attempt, as it really is an in-depth essay on the topic.)

But still, the myth would not die. People really, really wanted to see a boat set on fire using mirrors. After all, those MIT folks claimed to have done it! So now, President Obama himself has set the MythBusters on a mission to investigate the myth one last time. Here's a sneak peak:

Obama's involvement is part of his administration's STEM (Science, Technology, Engineering, and Math) awareness initiative. The idea, in brief, is to get STEM careers noticed by students, so they'll consider them when choosing career paths. As someone who actually has a STEM career (when I'm not writing, I'm a software engineer), I think this is awesome. And who better to show off practical applications of science, technology, engineering, and math than Adam and Jamie?

The big question, though, is whether this myth is busted or not! I have seen the episode, but I am sworn to secrecy about it. I can tell you this, though: the MythBusters rallied a huge number of students in order to make the ultimate solar ray, vastly ramping up all previous efforts. Watching Jamie in his solar-proof suit on the trireme, being blasted by mirror reflections, is pretty intense. Watching all those kids directly engaged in a large-scale science experiment is also totally awesome.

After the jump, some more promo shots from the episode. Jamie plays the attacking General Marcellus and Adam plays the Syracusian general urging his defending army to keep the mirrors focused.

MythBusters with students
Part of the Syracusian defending army.

Adam and Jamie with the Trireme
Adam and Jamie with the trireme.

Mirrors aiming at the trireme
The army's assault begins....

Tune in tonight to learn how it all turns out.

nextArticle.image_alt|e
iStock
arrow
Space
Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System
iStock
iStock

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

nextArticle.image_alt|e
iStock
arrow
science
Ocean Waves Are Powerful Enough to Toss Enormous Boulders Onto Land, Study Finds
iStock
iStock

During the winter of 2013-2014, the UK and Ireland were buffeted by a number of unusually powerful storms, causing widespread floods, landslides, and coastal evacuations. But the impact of the storm season stretched far beyond its effect on urban areas, as a new study in Earth-Science Reviews details. As we spotted on Boing Boing, geoscientists from Williams College in Massachusetts found that the storms had an enormous influence on the remote, uninhabited coast of western Ireland—one that shows the sheer power of ocean waves in a whole new light.

The rugged terrain of Ireland’s western coast includes gigantic ocean boulders located just off a coastline protected by high, steep cliffs. These massive rocks can weigh hundreds of tons, but a strong-enough wave can dislodge them, hurling them out of the ocean entirely. In some cases, these boulders are now located more than 950 feet inland. Though previous research has hypothesized that it often takes tsunami-strength waves to move such heavy rocks onto land, this study finds that the severe storms of the 2013-2014 season were more than capable.

Studying boulder deposits in Ireland’s County Mayo and County Clare, the Williams College team recorded two massive boulders—one weighing around 680 tons and one weighing about 520 tons—moving significantly during that winter, shifting more than 11 and 13 feet, respectively. That may not sound like a significant distance at first glance, but for some perspective, consider that a blue whale weighs about 150 tons. The larger of these two boulders weighs more than four blue whales.

Smaller boulders (relatively speaking) traveled much farther. The biggest boulder movement they observed was more than 310 feet—for a boulder that weighed more than 44 tons.

These boulder deposits "represent the inland transfer of extraordinary wave energies," the researchers write. "[Because they] record the highest energy coastal processes, they are key elements in trying to model and forecast interactions between waves and coasts." Those models are becoming more important as climate change increases the frequency and severity of storms.

[h/t Boing Boing]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios