CLOSE

Scientists Create Flubber-Like Effect Using Nanotubes

Now I'm no scientician, but I can tell you that the following video shows some seriously weird science. Basically, researchers set up a "superhydrophobic carbon nanotube array" (where "array" I think effectively means "board"), then dropped water droplets on the surface, filming the results at very high speed (several thousand frames per second). Weird stuff happens. The droplets bounce, they hop, and they even merge into mega-droplets. It's strangely mesmerizing and nerdy.

The authors describe their video as follows:

Video from the paper "Bouncing Water Droplet on a Superhydrophobic Carbon Nanotube Array," authored by Adrianus I. Aria, Morteza Gharib, published online on ArXiv, Submitted on 7 Oct 2010: http://arxiv.org/abs/1010.1351

The first two parts of the video show the impact dynamic of 30 microliters water droplet at different impact velocity. At low impact velocity of 1.03 m/s, the water droplet deforms upon impact and eventually bounces off completely of the surface of the array. At higher impact velocity of 2.21 m/s, the droplet breaks up into many smaller droplets and eventually bounces off completely of the surface of the array.

The coefficient of restitution of water droplet at very low impact velocity can be seen clearly by dropping a water droplet on a slightly tilted carbon nanotube array. At tilt angle of 2.5 degrees the droplet skips off of the surface of the array multiple times without showing any sign of pinning on the surface of the array, as demonstrated in the third part of the video. The fourth part of the video shows the sliding/rolling behavior of the droplet along the surface of a U-shaped carbon nanotube array. The fifth part of the video shows the impact of two identical 14 microliters water droplets to one another on a U-shaped carbon nanotube arrays. Upon impact, these two water droplets, which come from the opposite direction, merge to form one larger droplet.

Note: the action doesn't start until about 20 seconds in, and there is no sound.

For similar stuff, check out this post from June: Crazy Video: Super-Hydrophobic Substances.

(Via Daring Fireball.)

nextArticle.image_alt|e
arrow
History
The Queen of Code: Remembering Grace Hopper
By Lynn Gilbert, CC BY-SA 4.0, Wikimedia Commons

Grace Hopper was a computing pioneer. She coined the term "computer bug" after finding a moth stuck inside Harvard's Mark II computer in 1947 (which in turn led to the term "debug," meaning solving problems in computer code). She did the foundational work that led to the COBOL programming language, used in mission-critical computing systems for decades (including today). She worked in World War II using very early computers to help end the war. When she retired from the U.S. Navy at age 79, she was the oldest active-duty commissioned officer in the service. Hopper, who was born on this day in 1906, is a hero of computing and a brilliant role model, but not many people know her story.

In this short documentary from FiveThirtyEight, directed by Gillian Jacobs, we learned about Grace Hopper from several biographers, archival photographs, and footage of her speaking in her later years. If you've never heard of Grace Hopper, or you're even vaguely interested in the history of computing or women in computing, this is a must-watch:

nextArticle.image_alt|e
iStock
arrow
science
Why Are Glaciers Blue?
iStock
iStock

The bright azure blue sported by many glaciers is one of nature's most stunning hues. But how does it happen, when the snow we see is usually white? As Joe Hanson of It's Okay to Be Smart explains in the video below, the snow and ice we see mostly looks white, cloudy, or clear because all of the visible light striking its surface is reflected back to us. But glaciers have a totally different structure—their many layers of tightly compressed snow means light has to travel much further, and is scattered many times throughout the depths. As the light bounces around, the light at the red and yellow end of the spectrum gets absorbed thanks to the vibrations of the water molecules inside the ice, leaving only blue and green light behind. For the details of exactly why that happens, check out Hanson's trip to Alaska's beautiful (and endangered) Mendenhall Glacier below.

[h/t The Kid Should See This]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios