CLOSE
Original image

Sperm Warfare (Or: Why it Takes 1 Billion Sperm to Make One Zygote)

Original image

The average man produces roughly 525 billion sperm cells over his lifetime and releases, in one way or another, more than one billion of them per month and anywhere from 40 million to 1.2 billion in a single ejaculation. The males of other species boast some equally impressive numbers: 280 million, 1 billion and 3 billion per ejaculate for rabbits, sheep and bulls, respectively. If it only takes one sperm cell to fertilize an egg, though, why produce so many?

The Seminal Wars

The females of many species mate with and receive the sperm of multiple males, often in quick succession. Deep in the lady’s nether regions, those sperm compete to fertilize the egg. Now, if you’re serious about winning a lottery or a raffle, you don’t buy just one ticket do you? No, you buy several to increase your probability of winning. Sperm, in a way, are a lot like lottery tickets. If you’re serious about passing on your genes, then you want to get as many sperm as possible near a fertile egg cell. (In other ways, they’re not like lottery tickets at all, and I would discourage you from trying to buy them in gas stations or convenience stores.) For a male, the more of his sperm going up against his rivals’ seed, the merrier.

Sperm competition is such a powerful selective pressure, in fact, that it influences the size of the testes and the volume of ejaculate of some animals and causes others to modulate the amount of sperm they produce based on the presence of a rival male. Male chimpanzees, who face high levels of sperm competition, possess the largest testes among the great apes. Gorillas, who face almost no sperm competition thanks to a rigid social structure where the dominant male alone gets to mate with all the females, don’t need to waste precious energy and resources on sperm production and hence have some downright dinky testes—almost 15 times smaller than chimps’ (relative to their body weight).

Male humans would feel somewhat embarrassed if they were naked in a locker room full of chimps, but still pretty good about themselves if they were naked and surrounded by silverbacks (nervous, too, perhaps). Evolutionary biologists are still trying to work out whether our relatively large testes are leftovers from some point in our evolutionary past, or if sperm competition was at one point an important factor in human reproduction.

It’s not a sprint. It’s a marathon

Sperm competition isn’t a prevalent problem among modern Homo sapiens and guys don’t really need a veritable army of sperm to race someone else’s genes to an egg. We still need an awful lot of those squiggly little cells, though, because even if there’s no other sperm to compete against, every man’s little swimmers still have to fight in a battle of the sexes. Females demand only the finest sperm for their eggs, and the war their bodies wage on sperm is one of attrition.

After insemination, the sperm cells of humans, and many other species, have a long trip ahead of them, relative to their tiny size. At every step of the way, many sperm cells run out of energy or die and their surviving brothers are forced to leave them behind: only a portion of the sperm that are deposited into the vagina make it to the uterus, an even smaller group get to the oviducts and a fraction of those make their way to the upper oviduct where the egg is actually located. Once the sperm reach the egg, things don’t get any easier. One does not simply walk into Mordor. The egg is covered by a thick layer of gelatinous, follicular cells called the cumulus oophorus, which acts as a barrier, and it often takes the assault of several sperm cells to break it down enough for one lucky one to get through and fertilize the egg. Charles Lindemann, who researches the mechanisms of sperm motility at Oakland University in Rochester, Michigan, likens the whole ordeal to a “marathon run in a maze filled with mucus followed by an obstacle course.”

The odds stacked against any single sperm cell making the grueling journey to the egg can be offset by producing a large number of sperm. While just a small fraction of the sperm will reach their destination and do the job they were made to do, having a few million more cells backing them up makes for a pretty good reproductive insurance policy.

Original image
iStock
arrow
science
Geological Map Shows the Massive Reservoir Bubbling Beneath Old Faithful
Original image
iStock

Yellowstone National Park is home to rivers, waterfalls, and hot springs, but Old Faithful is easily its most iconic landmark. Every 45 to 125 minutes, visitors gather around the geyser to watch it shoot streams of water reaching up to 100 feet in the air. The punctual show is one of nature’s greatest spectacles, but new research from scientists at the University of Utah suggests that what’s going on at the geyser’s surface is just the tip of the iceberg.

The study, published in the journal Geophysical Research Letters, features a map of the geological plumbing system beneath Old Faithful. Geologists have long known that the eruptions are caused by water heated by volcanic rocks beneath the ground reaching the boiling point and bubbling upwards through cracks in the earth. But the place where this water simmers between appearances has remained mysterious to scientists until now.

Using 133 seismometers scattered around Old Faithful and the surrounding area, the researchers were able to record the tiny tremors caused by pressure build-up in the hydrothermal reservoir. Two weeks of gathering data helped them determine just how large the well is. The team found that the web of cracks and fissures beneath Old Faithful is roughly 650 feet in diameter and capable of holding more than 79 million gallons of water. When the geyser erupts, it releases just 8000 gallons. You can get an idea of how the reservoir fits into the surrounding geology from the diagram below.

Geological map of geyser.
Sin-Mei Wu, University of Utah

After making the surprising discovery, the study authors plan to return to the area when park roads close for the winter to conduct further research. Next time, they hope to get even more detailed images of the volatile geology beneath this popular part of Yellowstone.

Original image
YouTube
arrow
Animals
Why Do Female Spotted Hyenas Give Birth Through Their Pseudo-Penises?
Original image
YouTube

At the zoo, you can sometimes tell the difference between male and female animals by noting their physical size, their behavior, and yes, their nether regions. Hyenas, however, flip the script: Not only are lady spotted hyenas bigger and meaner than their male counterparts, ruling the pack with an iron paw, they also sport what appear to be penises—shaft, scrotum, and all.

"Appear" is the key word here: These 7-inch-long phalluses don't produce sperm, so they're technically really long clitorises in disguise. But why do female hyenas have them? And do they actually have to (gulp) give birth through them? Wouldn't that hurt … a lot?

The short answers to these questions are, respectively, "We don't know," "Yes," and "OW." Longer answers can be found in this MinuteEarth video, which provides the full lowdown on hyena sex. Don't say we didn't warn you.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios