CLOSE

What Should I Ask the Mythbusters?

mental_floss has been offered an interview with three of the Mythbusters: Adam Savage, Jamie Hyneman, and Kari Byron. There's a new season of Mythbusters starting in two weeks, and Kari Byron is also hosting the new science show Head Rush, a commercial-free hour of experiments on the Science Channel every weekday at 4pm.

Anyway, for this interview -- while I've got some nerdy thoughts of my own, I want to know what your burning questions are. Got a favorite myth you want to see busted? Want to pick a bone with the Mythbusters' methodology in some obscure myth from four years ago? Want facial hair-care tips from Jamie? ASK AWAY.

The Details

Post your questions in the comments. The cut-off date is Monday, September 27 at 8am Pacific. We'll pick our favorite questions and pass them along to Adam, Jamie, and Kari for an interview that will be posted on Wednesday, October 6 -- the day the new season premieres.

Methodology for choosing the top questions: will be subjective, capricious, and based primarily on the awesomeness of the question. Should a situation arise in which all questions are awesome, a group of mental_floss writers shall be empaneled, Twelve Angry Men style, to determine the best.

Number of questions to be selected: something like ten. We'll see how much the Mythbusters can take, but we think ten seems like a fair number, plus a few nerdy bonus _floss staff questions will be thrown in for good measure. If you ask a multi-part question, be aware that we may only choose the most awesome part of it.

Now, add your questions in the comments! You have until Monday, so be quick about it!

(Photos courtesy of the Discovery Channel. After the jump, check out a few more fun promo shots.)

Mythbusters - Adam and Jamie

Mythbusters - Adam with Tennis Ball

nextArticle.image_alt|e
iStock
arrow
Space
Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System
iStock
iStock

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

nextArticle.image_alt|e
iStock
arrow
science
Ocean Waves Are Powerful Enough to Toss Enormous Boulders Onto Land, Study Finds
iStock
iStock

During the winter of 2013-2014, the UK and Ireland were buffeted by a number of unusually powerful storms, causing widespread floods, landslides, and coastal evacuations. But the impact of the storm season stretched far beyond its effect on urban areas, as a new study in Earth-Science Reviews details. As we spotted on Boing Boing, geoscientists from Williams College in Massachusetts found that the storms had an enormous influence on the remote, uninhabited coast of western Ireland—one that shows the sheer power of ocean waves in a whole new light.

The rugged terrain of Ireland’s western coast includes gigantic ocean boulders located just off a coastline protected by high, steep cliffs. These massive rocks can weigh hundreds of tons, but a strong-enough wave can dislodge them, hurling them out of the ocean entirely. In some cases, these boulders are now located more than 950 feet inland. Though previous research has hypothesized that it often takes tsunami-strength waves to move such heavy rocks onto land, this study finds that the severe storms of the 2013-2014 season were more than capable.

Studying boulder deposits in Ireland’s County Mayo and County Clare, the Williams College team recorded two massive boulders—one weighing around 680 tons and one weighing about 520 tons—moving significantly during that winter, shifting more than 11 and 13 feet, respectively. That may not sound like a significant distance at first glance, but for some perspective, consider that a blue whale weighs about 150 tons. The larger of these two boulders weighs more than four blue whales.

Smaller boulders (relatively speaking) traveled much farther. The biggest boulder movement they observed was more than 310 feet—for a boulder that weighed more than 44 tons.

These boulder deposits "represent the inland transfer of extraordinary wave energies," the researchers write. "[Because they] record the highest energy coastal processes, they are key elements in trying to model and forecast interactions between waves and coasts." Those models are becoming more important as climate change increases the frequency and severity of storms.

[h/t Boing Boing]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios