Original image

Mighty Microbes: 4 Little Creatures that Pack a Big Scientific Punch

Original image

By Maggie Koerth-Baker

Economists do it with spreadsheets and charts. Architects favor balsa wood. But when a biologist needs a model, it's gotta be alive. Here's to the tiny critters that have inched our world forward, one microscopic step at a time.

Big Name: Shewanella oneidensis

Why It Deserves a TV Special: Shewanella can go without air longer than David Blaine. If there's no oxygen available, this crafty bacterium can switch gears and consume metal instead. Thanks to this remarkable skill, shewanella can live almost anywhere—from the surface of the Earth to the bottom of the ocean. Not surprisingly, scientists see the bacterium as the perfect model for studying how life evolved during the early days of the Earth, when oxygen was scarce.

How It's Saving the Planet: No one knows exactly how shewanella's alternative breathing method works. What scientists do know is that the process transfers extra electrons to metals. When shewanella breathe in uranium and chromium (metals that can be toxic to humans), the extra electrons change the metals so that they can't move through ground water. In other words, shewanella can actually stop toxins in their tracks. And that's good news, because dangerous metals sometimes leak from factories and dumps, poisoning our water supplies. Because shewanella can stop these pollutants, scientists are working on ways to protect lakes and streams by surrounding toxic waste sites with the bacteria.

Big Name: Escherichia coli

You Know It As: E. coli

Don't Believe What You Read: E. coli has a reputation as the scourge of the salad bar, but the vast majority of E. coli strains won't make people sick. In fact, E. coli is one of the most important bacteria inside your intestinal tract. Scientists love working with it, because it's a simple organism that reproduces quickly and because it contains the component parts of more complicated life forms, such as RNA and DNA.

How It Backs Up Darwin: Believe it or not, this infamous bacterium has done a lot to further our understanding of evolution.

Because of its stunning ability to reproduce quickly, E. coli is an excellent model for tracing genetic mutations. In June 2008, New Scientist reported on a research project at the University of Michigan that investigated 44,000 generations of E. coli. Twenty years ago, the researchers started with a single bacterium; then they separated its descendants into isolated populations and watched them grow. Around generation No. 31,500, one population developed the ability to metabolize citrate, a nutrient in the culture of the petri dishes. It was the equivalent of one group of people—say, Europeans—suddenly being able to digest dirt. The researchers figured this ability was based on several mutations that just happened to eventually combine into a useful trait. Try as they might, the other populations never hit on this exact combination. According to New Scientist, the experiment suggests there's a lot of chance involved in evolution. One group can randomly develop a useful ability that the other groups never acquire, even given enough time and resources.

Big Name: Chlamydomonas reinhardtii

Adorable Nickname: Chlamyl

Its Place on the Family Tree: Prominent. One of the oldest forms of life, these single-cell algae live at the evolutionary branch that separates animals and plants, meaning they share characteristics with both. For instance, chlamy can transform light into energy like a plant, but it can also swim like an animal by propelling itself through water with flagella (the same wiggly tails that are attached to sperm cells). While chlamy can offer us insight into various aspects of evolution, it's also helping us tackle human disaease. Because the algae's flagella resemble cilia, the tiny hair-like structures that line your organs, scientists also use chlamy to model and understand the cilia's role in illnesses such as kidney and heart disease.

How It Will Solve the Energy Crisis: One of the byproducts of chlamy's photosynthetic process is hydrogen, an element people will need en masse to drive hydrogen-powered cars. Right now, hydrogen fuel is derived from natural gas, a non-renewable resource. Scientists are hoping that in time, however, chlamy will provide a cheaper, safer, and greener way to produce large amounts of fuel.

Big Name: Caenorhabditis elegans

Why Scientists Love It: This microscopic round worm is see-through. No, really. Thanks to its transparent flesh, biologists can easily watch what's going on inside. And there's a lot to see. Despite being less than 1 millimeter long, this multi-cell worm has all the physiological systems of much larger animals. Better still, 35 percent of its genes are related to ours.

Another Big Advantage: C. elegans are easy to care for, needing only a petri dish for a home and E. coli to eat.

How It Will Help Us Live Forever: Scientists have used C. elegans to study what happens to individual cells and entire organisms as they age. There are two dominant theories of aging: One theory posits that aging is a cumulative process of wear and tear on cells, while the other maintains that genes control aging. A recent study of C. elegans at Stanford University provided evidence for the latter. The study found that as the worms aged, levels of three transcription factors (molecular switches that turn genes on and off) become unbalanced. These changes triggered the genetic pathways that turn spry young worms into decrepit old ones. And because it's a lot easier to control transcription factors than it is to prevent all the things that can damage cells (injury, disease, radiation), scientists are optimistic about finding a way to keep us young forever. As Rutgers researcher Monica Driscoll told Scientific American, "Once you've figured out what a key molecule is doing in the worm, you can look for it in humans and expect the same things to happen."

This article originally appeared in mental_floss magazine. If you’re in a subscribing mood, here are the details. Got an iPad? We also offer digital subscriptions through Zinio.

Original image
iStock // Ekaterina Minaeva
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
© Nintendo
Nintendo Will Release an $80 Mini SNES in September
Original image
© Nintendo

Retro gamers rejoice: Nintendo just announced that it will be launching a revamped version of its beloved Super Nintendo Classic console, which will allow kids and grown-ups alike to play classic 16-bit games in high-definition.

The new SNES Classic Edition, a miniature version of the original console, comes with an HDMI cable to make it compatible with modern televisions. It also comes pre-loaded with a roster of 21 games, including Super Mario Kart, The Legend of Zelda: A Link to the Past, Donkey Kong Country, and Star Fox 2, an unreleased sequel to the 1993 original.

“While many people from around the world consider the Super NES to be one of the greatest video game systems ever made, many of our younger fans never had a chance to play it,” Doug Bowser, Nintendo's senior vice president of sales and marketing, said in a statement. “With the Super NES Classic Edition, new fans will be introduced to some of the best Nintendo games of all time, while longtime fans can relive some of their favorite retro classics with family and friends.”

The SNES Classic Edition will go on sale on September 29 and retail for $79.99. Nintendo reportedly only plans to manufacture the console “until the end of calendar year 2017,” which means that the competition to get your hands on one will likely be stiff, as anyone who tried to purchase an NES Classic last year will well remember.

In November 2016, Nintendo released a miniature version of its original NES system, which sold out pretty much instantly. After selling 2.3 million units, Nintendo discontinued the NES Classic in April. In a statement to Polygon, the company has pledged to “produce significantly more units of Super NES Classic Edition than we did of NES Classic Edition.”

Nintendo has not yet released information about where gamers will be able to buy the new console, but you may want to start planning to get in line soon.