How Scurvy Was Cured, then the Cure Was Lost

Yes, this really happened: scurvy was "cured" as early as 1497, when Vasco de Gama's crew discovered the power of citrus...but this cure was repeatedly lost, forgotten, rediscovered, misconstrued, confused, and just generally messed around with for hundreds of years, despite being a leading killer of seafarers and other explorers. By the 1870s the "citrus cure" was discredited, and for nearly sixty years, scurvy -- despite being cured, with scientific research to back it up -- continued killing people, including men on Scott's 1911 expedition to the South Pole. This went on until vitamin C was finally isolated in 1932 during research on guinea pigs. Self-described painter/computer guy Maciej Ceglowski gives us the absurdly fascinating story of scurvy -- a bizarre tale of science gone wrong, and a really good explanation of why you should eat a bit of citrus once in a while. (I would argue from this piece alone that Ceglowski needs to add "science journalist" to his title.)

Now, I had been taught in school that scurvy had been conquered in 1747, when the Scottish physician James Lind proved in one of the first controlled medical experiments that citrus fruits were an effective cure for the disease. From that point on, we were told, the Royal Navy had required a daily dose of lime juice to be mixed in with sailors' grog, and scurvy ceased to be a problem on long ocean voyages.

But here was a Royal Navy surgeon in 1911 apparently ignorant of what caused the disease, or how to cure it. Somehow a highly-trained group of scientists at the start of the 20th century knew less about scurvy than the average sea captain in Napoleonic times. [Robert Falcon] Scott left a [South Pole] base abundantly stocked with fresh meat, fruits, apples, and lime juice, and headed out on the ice for five months with no protection against scurvy, all the while confident he was not at risk. What happened?

... In the second half of the nineteenth century, the cure for scurvy was lost. The story of how this happened is a striking demonstration of the problem of induction, and how progress in one field of study can lead to unintended steps backward in another.

Read the rest for a highly readable, thoroughly researched history of scurvy and its treatment.

See also: our Scurvy T-Shirt ("When Life Gives You Scurvy, Make Lemonade").

(Story via

MARS Bioimaging
The World's First Full-Color 3D X-Rays Have Arrived
MARS Bioimaging
MARS Bioimaging

The days of drab black-and-white, 2D X-rays may finally be over. Now, if you want to see what your broken ankle looks like in all its full-color, 3D glory, you can do so thanks to new body-scanning technology. The machine, spotted by BGR, comes courtesy of New Zealand-based manufacturer MARS Bioimaging.

It’s called the MARS large bore spectral scanner, and it uses spectral molecular imaging (SMI) to produce images that are fully colorized and in 3D. While visually appealing, the technology isn’t just about aesthetics—it could help doctors identify issues more accurately and provide better care.

Its pixel detectors, called “Medipix” chips, allow the machine to identify colors and distinguish between materials that look the same on regular CT scans, like calcium, iodine, and gold, Buzzfeed reports. Bone, fat, and water are also differentiated by color, and it can detect details as small as a strand of hair.

“It gives you a lot more information, and that’s very useful for medical imaging. It enables you to do a lot of diagnosis you can’t do otherwise,” Phil Butler, the founder/CEO of MARS Bioimaging and a physicist at the University of Canterbury, says in a video. “When you [have] a black-and-white camera photographing a tree with its leaves, you can’t tell whether the leaves are healthy or not. But if you’ve got a color camera, you can see whether they’re healthy leaves or diseased.”

The images are even more impressive in motion. This rotating image of an ankle shows "lipid-like" materials (like cartilage and skin) in beige, and soft tissue and muscle in red.

The technology took roughly a decade to develop. However, MARS is still working on scaling up production, so it may be some time before the machine is available commercially.

[h/t BGR]

ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
Look Closely—Every Point of Light in This Image Is a Galaxy
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Even if you stare closely at this seemingly grainy image, you might not be able to tell there’s anything to it besides visual noise. But it's not static—it's a sliver of the distant universe, and every little pinprick of light is a galaxy.

As Gizmodo reports, the image was produced by the European Space Agency’s Herschel Space Observatory, a space-based infrared telescope that was launched into orbit in 2009 and was decommissioned in 2013. Created by Herschel’s Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS), it looks out from our galaxy toward the North Galactic Pole, a point that lies perpendicular to the Milky Way's spiral near the constellation Coma Berenices.

A close-up of a view of distant galaxies taken by the Herschel Space Observatory
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Each point of light comes from the heat of dust grains between different stars in a galaxy. These areas of dust gave off this radiation billions of years before reaching Herschel. Around 1000 of those pins of light belong to galaxies in the Coma Cluster (named for Coma Berenices), one of the densest clusters of galaxies in the known universe.

The longer you look at it, the smaller you’ll feel.

[h/t Gizmodo]


More from mental floss studios