CLOSE

Dogs May Prevent Asthma In Kids

A recent study by the University of Arizona has shown that having a dog around children will not cause asthma, and may actually help prevent it. The National Institutes of Health were so impressed with the results of the study that they are investing almost a million dollars into a grant to have the researchers make their results more conclusive.

"Several longitudinal studies have shown that exposure to certain domestic animals, for example, indoor dogs, during a person's early life (even possibly before he or she is born) is associated with strong protection against asthma and asthma-related conditions later in life," Serrine Lau, a member of the research team said.

So if you were hesitant to get a dog because they were afraid their children may develop breathing problems, you may want to reconsider.

[Photo: Charlotte & Bailey English.]

nextArticle.image_alt|e
George Mayerle, U.S. National Library of Medicine // Public Domain
arrow
Design
This 1907 Vision Test Was Designed for People of All Nationalities
George Mayerle, U.S. National Library of Medicine // Public Domain
George Mayerle, U.S. National Library of Medicine // Public Domain

At the turn of the 20th century, San Francisco was a diverse place. In fact, Angel Island Immigration Station, located on an island in the San Francisco Bay, was known as the “Ellis Island of the West,” processing some 300,000 people coming to the U.S. in the early 1900s. George Mayerle, a German optometrist working in the city at the time, encountered this diversity of languages and cultures every day in his practice. So in the 1890s, Mayerle created what was billed as “the only [eye] chart published that can be used by people of any nationality,” as The Public Domain Review alerts us.

Anticipating the difficulty immigrants, like those from China or Russia, would face when trying to read a vision test made solely with Roman letters for English-speaking readers, he designed a test that included multiple scripts. For his patients that were illiterate, he included symbols. It features two different styles of Roman scripts for English-speaking and European readers, and characters in Cyrillic, Hebrew, Japanese, and Chinese scripts as well as drawings of dogs, cats, and eyes designed to test the vision of children and others who couldn't read.

The chart, published in 1907 and measuring 22 inches by 28 inches, was double-sided, featuring black text on a white background on one side and white text on a black background on the other. According to Stephen P. Rice, an American studies professor at Ramapo College of New Jersey, there are other facets of the chart designed to test for a wide range of vision issues, including astigmatism and color vision.

As he explains in the 2012 history of the National Library of Medicine’s collections, Hidden Treasure [PDF], the worldly angle was partly a marketing strategy on Mayerle’s part. (He told fellow optometrists that the design “makes a good impression and convinces the patient of your professional expertness.”)

But that doesn’t make it a less valuable historical object. As Rice writes, “the ‘international’ chart is an artifact of an immigrant nation—produced by a German optician in a polyglot city where West met East (and which was then undergoing massive rebuilding after the 1906 earthquake)—and of a globalizing economy.”

These days, you probably won’t find a doctor who still uses Mayerle’s chart. But some century-old vision tests are still in use today. Shinobu Ishihara’s design for a visual test for colorblindness—those familiar circles filled with colored dots that form numbers in the center—were first sold internationally in 1917, and they remain the most popular way to identify deficiencies in color vision.

[h/t The Public Domain Review]

nextArticle.image_alt|e
iStock
arrow
The Body
12 Fantastic Facts About the Immune System
iStock
iStock

The human body is an amazing thing. For each one of us, it's the most intimate object we know. And yet most of us don't know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

If it weren't for our immune system, none of us would live very long. Not only does the immune system protect us from external pathogens like viruses, bacteria, and parasites, it also battles cells that have mutated due to illnesses, like cancer, within the body.

Here are 12 fighting facts about the immune system.

1. THE IMMUNE SYSTEM SAVES LIVES.

The immune system is a complex network of tissues and organs that spreads throughout the entire body. In a nutshell, it works like this: A series of "sensors" within the system detects an intruding pathogen, like bacteria or a virus. Then the sensors signal other parts of the system to kill the pathogen and eliminate the infection.

"The immune system is being bombarded by all sorts of microbes all the time," Russell Vance, professor of immunology at University of California, Berkeley and an investigator for the Howard Hughes Medical Institute, tells Mental Floss. "Yet, even though we're not aware of it, it's saving our lives every day, and doing a remarkably good job of it."

2. BEFORE SCIENTISTS UNDERSTOOD THE IMMUNE SYSTEM, ILLNESS WAS CHALKED UP TO UNBALANCED HUMORS.

Long before physicians realized how invisible pathogens interacted with the body's system for fighting them off, doctors diagnosed all ills of the body and the mind according to the balance of "four humors": melancholic, phlegmatic, choleric, or sanguine. These criteria, devised by the Greek philosopher Hippocrates, were divided between the four elements, which were linked to bodily fluids (a.k.a. humors): earth (black bile), air (blood), water (phlegm) and fire (yellow bile), which also carried properties of cold, hot, moist, or dry. Through a combination of guesswork and observation, physicians would diagnose patients' humors and prescribe treatment that most likely did little to support the immune system's ability to resist infection.

3. TWO MEN WHO UNRAVELED THE IMMUNE SYSTEM'S FUNCTIONS WERE BITTER RIVALS.

Two scientists who discovered key functions of the immune system, Louis Pasteur and Robert Koch, should have been able to see their work as complementary, but they wound up rivals. Pasteur, a French microbiologist, was famous for his experiments demonstrating the mechanism of vaccines using weakened versions of the microbes. Koch, a German physician, established four essential conditions under which pathogenic bacteria can infect hosts, and used them to identify the Mycobacterium tuberculosis bacterium that causes tuberculosis. Though both helped establish the germ theory of disease—one of the foundations of modern medicine today—Pasteur and Koch's feud may have been aggravated by nationalism, a language barrier, criticisms of each other's work, and possibly a hint of jealousy.

4. SPECIALIZED BLOOD CELLS ARE YOUR IMMUNE SYSTEM'S GREATEST WEAPON.

The most powerful weapons in your immune system's arsenal are white blood cells, divided into two main types: lymphocytes, which create antigens for specific pathogens and kill them or escort them out of the body; and phagocytes, which ingest harmful bacteria. White blood cells not only attack foreign pathogens, but recognize these interlopers the next time they meet them and respond more quickly. Many of these immune cells are produced in your bone marrow but also in the spleen, lymph nodes, and thymus, and are stored in some of these tissues and other areas of the body. In the lymph nodes, which are located throughout your body but most noticeably in your armpits, throat, and groin, lymphatic fluid containing white blood cells flows through vein-like tubules to escort foreign invaders out.

5. THE SPLEEN HELPS YOUR IMMUNE SYSTEM WORK.

Though you can live without the spleen, an organ that lies between stomach and diaphragm, it's better to hang onto it for your immune function. According to Adriana Medina, a doctor who specializes in hematology and oncology at the Alvin and Lois Lapidus Cancer Institute at Sinai Hospital in Baltimore, your spleen is "one big lymph node" that makes new white blood cells, and cleans out old blood cells from the body.

It's also a place where immune cells congregate. "Because the immune cells are spread out through the body," Vance says, "eventually they need to communicate with each other." They do so in both the spleen and lymph nodes.

6. YOU HAVE IMMUNE CELLS IN ALL OF YOUR TISSUES.

While immune cells may congregate more in lymph nodes than elsewhere, "every tissue in your body has immune cells stationed in it or circulating through it, constantly roving for signs of attack," Vance explains. These cells also circulate through the blood. The reason for their widespread presence is that there are thousands of different pathogens that might infect us, from bacteria to viruses to parasites. "To eliminate each of those different kinds of threats requires specialized detectors," he says.

7. HOW FRIENDLY YOU'RE FEELING COULD BE LINKED TO YOUR IMMUNE SYSTEM.

From an evolutionary perspective, humans' high sociability may have less to do with our bigger brains, and more to do with our immune system's exposure to a greater number of bacteria and other pathogens.

Researchers at the University of Virginia School of Medicine have theorized that interferon gamma (IG), the immune cytokine that helps the immune system fight invaders, was linked to social behavior, which is one of the ways we become exposed to pathogens.

In mice, they found IG acted as a kind of brake to the brain's prefrontal cortex, essentially stopping aberrant hyperactivity that can cause negative changes in social behavior. When they blocked the IG molecule, the mice's prefrontal cortexes became hyperactive, resulting in less sociability. When they restored the function, the mice's brains returned to normal, as did their social behavior.

8. YOUR IMMUNE SYSTEM MIGHT RECRUIT UNLIKELY ORGANS—LIKE THE APPENDIX—INTO ITS SERVICE.

The appendix gets a bad rap as a vestigial organ that does nothing but occasionally go septic and create a need for immediate surgery. But the appendix may help keep your gut in good shape. According to Gabrielle Belz, professor of molecular immunology at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, research by Duke University's Randal Bollinger and Bill Parker suggests the appendix houses symbiotic bacteria that are important for overall gut health—especially after infections wipe out the gut's good microbes. Special immune cells known as innate lymphoid cells (ILCs) in the appendix may help to repopulate the gut with healthy bacteria and put the gut back on track to recovery.

9. GUT BACTERIA HAS BEEN SHOWN TO BOOST IMMUNE SYSTEMS IN MICE.

Researchers at the University of Chicago noticed that one group of mice in their lab had a stronger response to a cancer treatment than other mice. They eventually traced the reason to a strain of bacteria—Bifidobacterium—in the mice's guts that boosted the animals' immune system to such a degree they could compare it to anti-cancer drugs called checkpoint inhibitors, which keep the immune system from overreacting.

To test their theory, they transferred fecal matter from the robust mice to the stomachs of less immune-strengthened mice, with positive results: The treated mice mounted stronger immune responses and tumor growth slowed. When they compared the bacterial transfer effects with the effects of a checkpoint inhibitor drug, they found that the bacteria treatment was just as effective. The researchers believe that, with further study, the same effect could be seen in human cancer patients.

10. SCIENTISTS ARE TRYING TO HARNESS THE IMMUNE SYSTEM'S "PAC-MAN" CELLS TO TREAT CANCER.

Aggressive pediatric tumors are difficult to treat due to the toxicity of chemotherapy, but some researchers are hoping to develop effective treatments without the harmful side effects. Stanford researchers designed a study around a recently discovered molecule known as CD47, a protein expressed on the surface of all cells, and how it interacts with macrophages, white blood cells that kill abnormal cells. "Think of the macrophages as the Pac-Man of the immune system," Samuel Cheshier, lead study author and assistant professor of neurosurgery at Stanford Medicine, tells Mental Floss.

CD47 sends the immune system's macrophages a "don't eat me" signal. Cancer cells fool the immune system into not destroying them by secreting high amounts of CD47. When Cheshier and his team blocked the CD47 signals on cancer cells, the macrophages could identify the cancer cells and eat them, without toxic side effects to healthy cells. The treatment successfully shrank all five of the common pediatric tumors, without the nasty side effects of chemotherapy.

11. A NEW THERAPY FOR TYPE 1 DIABETES TRICKS THE IMMUNE SYSTEM.

In those with type 1 diabetes, the body attacks its own pancreatic cells, interrupting its normal ability to produce insulin in response to glucose. In a 2016 paper, researchers at MIT, in collaboration with Boston's Children's Hospital, successfully designed a new material that allows them to encapsulate and transplant healthy pancreatic "islet" cells into diabetic mice without triggering an immune response. Made from seaweed, the substance is benign enough that the body doesn't react to it, and porous enough to allow the islet cells to be placed in the abdomen of mice, where they restore the pancreatic function. Senior author Daniel Anderson, an associate professor at MIT, said in a statement that this approach "has the potential to provide [human] diabetics with a new pancreas that is protected from the immune system, which would allow them to control their blood sugar without taking drugs. That's the dream."

12. IMMUNOTHERAPY IS ON THE CUTTING EDGE OF IMMUNE SYSTEM RESEARCH.

Over the last few years, research in the field of immunology has focused on developing cancer treatments using immunotherapy. This method engineers the patient's own normal cells to attack the cancer cells. Vance says the technique could be used for many more conditions. "I feel like that could be just the tip of the iceberg," he says. "If we can understand better what the cancer and immunotherapy is showing, maybe we can go in there and manipulate the immune responses and get good outcomes for other diseases, too."

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios