CLOSE

"The Botany of Desire" Documentary, TONIGHT at 8pm on PBS

Update: the entire documentary is now available online for free!

A new PBS* documentary, The Botany of Desire, premieres Wednesday night (tonight!) at 8pm on PBS stations throughout the US. It's based on the popular Michael Pollan book of the same name, and I urge you to carve out two hours (in most markets between 8pm - 10pm) on Wednesday night to watch it. The program is packed with science, history, and beautiful photography.

I've seen the film in advance, and I highly recommend it, particularly if you're interested in any of the four plants featured in it: tulip, marijuana, potato, and apple. By telling the stories of these plants, Pollan explains how in some ways the plants are manipulating us, rather than the other way around -- in the same way that flowers "use" bees to spread their pollen, these plants have "used" humans to spread themselves across the planet and out-compete other plants. One note: the program may not be suitable for young children, as there is use of the word "sex" (as applied to plants) and discussion of marijuana. It also might be pretty boring for the under-twelve set (despite beautiful flower photography), unless they're thoroughly nerdy.

Here's a preview of the documentary:

After the jump, I include some notes on each plant discussed in the documentary.

The Apple - Good for Booze AND for Eatin'

Apples arose in Kazakhstan, where bears would eat them and, uh, deposit the seeds as they went. But when people entered the picture, we began to spread the apple and its sweetness. Thus, the "biological strategy" of apples is to increase their sweetness, causing us to spread them around the globe. Humans have an innate desire for sweetness -- presumably because in nature, sweetness is rare and generally denotes lots of calories.

Although the Bible doesn't specify the fruit that was at the heart of so much trouble in the Garden of Eden, we assume it to be an apple -- even though it was probably a pomegranate due to geographic restrictions on where apples grow best. Then there's the rather fascinating discussion of Johnny Appleseed, whose real motivation was to bring alcohol (via hard cider) to pioneers, rather than tasty sweet apples. (Follow the link for some more info, all snagged from Pollan's book, on the man -- he was surprisingly rich for a dude who wore a tin pot on his head.)

Tulips

Tulips are examples of angiosperms, or flowering plants. The rise of the angiosperms brought sex (via flowers and pollen exchange) into the plant picture, and as Pollan says, "sex creates variation." The documentary thoroughly explains the Dutch speculative investment bubble known as Tulip Mania, which made tulips one of the most valuable commodities in the world. At the height of Tulip Mania, a single tulip bulb sold for the equivalent of what today would be $10-15 million! Tragically, some of the most prized tulips were made beautiful because of a virus that was slowing killing them -- which caused spectacular striped or "broken" flowers, but ultimately killed the plant. Pollan suggests that the tulip's biological "strategy" has been to develop a form of beauty that humans find very appealing, causing us to domesticate and grow it even to the point of financial ruin.

Cannabis

I won't say much about this section, as this is a family blog, but I can certainly say that this program treats the topic fairly and doesn't go nuts with it. There's an interesting discussion of how THC (the main "active ingredient") binds to receptors in the human brain that affect the brain's ability to remember and forget -- and Pollan wonders exactly how a plant would find a way to manipulate those human brain receptors in order to make cannabis such a widely-propagated plant today. It is a curious question, indeed -- how would a plant manage to just "happen" to have such a profound effect on humans? Again, Pollan wonders if this is a biological "strategy" in some sense.

The documentary includes extensive footage of legal (under state laws, though not federal law) cannabis growing operations -- you get an inside look into how medical marijuana is produced, and it's surprisingly complex. My favorite line: in describing how the farmers plant only female cannabis plants so they'll produce more THC-rich resin, Pollan describes the grow room as a room of "massive sexual frustration" -- all the female plants are desperately trying to catch some male pollen, producing more and more resin in their efforts.

Potatoes

The documentary takes us to South America, showing how the descendants of the Incas are still farming potatoes, and how potatoes traveled from South America to Europe via the Spanish Conquistadores. The potato was such a hugely productive crop (more food per acre than grain) that it transformed the Old World, enabling the industrial revolution. There's also much discussion of "The Lumper," the dominant strain of potato in Ireland that happened to be susceptible to a wind-spread fungus that destroyed Lumpers, causing the terrible Potato Famine. The famine killed one out of every eight people living in Ireland. Can you imagine that? Pollan suggests that the Potato Famine is a parable about the dangers of monoculture (planting a single type of plant) -- had the Irish planted a wider variety of potatoes, they might have had more that were resistant to the fungus that killed Lumpers.

Also discussed: how the fast food industry currently relies on a monoculture of the Russet Burbank potato to make the "long fries" used in McDonald's, to fill those tall red fry boxes; how that monoculture demands lots of pesticides; and how Monsanto is developing insect-repellant crops -- and what happens with those crops over the long term.

Full Blogger Disclosure

I have received an advance screener of this documentary from PBS, but have not been compensated in any way for this post. I just like PBS and documentaries, and think this is a great program -- and the book is highly recommended as well.

* = Note that the program is presented by KQED in San Francisco and produced by Kikim Media. But to myself and y'all, that's fancy talk for "PBS."

Original image
Hulton Archive/Getty
arrow
science
9 Facts about Physicist Michael Faraday, the 'Father of Electricity'
Original image
Hulton Archive/Getty

A self-taught scientist, Michael Faraday (1791-1867) excelled in chemistry and physics to become one of the most influential thinkers in history. He’s been called the "father of electricity," (Nikola Tesla and Thomas Edison also wear that crown) and his appetite for experimenting knew no bounds. "Nothing is too wonderful to be true, if it be consistent with the laws of nature; and in such things as these, experiment is the best test of such consistency," he wrote. Faraday discovered laws of electromagnetism, invented the first electric motor, and built the first electric generator—paving the way for our mechanized age. Read on for more Faraday facts.

1. HE NEVER HAD A FORMAL SCIENTIFIC EDUCATION.

Born in south London in a working-class family, Faraday earned a rudimentary education in reading, writing, and math. When he turned 14 he was apprenticed to a London bookbinder for the following seven years. In his free time, Faraday read Jane Marcet's Conversations in Chemistry, an 1806 bestseller that explained scientific topics for a general audience.

2. HE WAS A SELF-STARTER.

Like Marcet, Faraday was fascinated by the work of Sir Humphry Davy, a charismatic chemist who had found fame by testing the effects of nitrous oxide on himself. (He let others, including poet Samuel Taylor Coleridge, inhale the gas on the condition that they keep diaries of their thoughts and sensations while high.) In spring 1812, a customer at the bookbindery gave Faraday tickets to see Davy’s upcoming lectures. Faraday compiled his notes from the lectures in a bound volume (the one benefit of his toil at the bookbinder's) and sent the book to Davy, requesting to become his assistant—an unheard-of notion for a tradesman with no university degree. Sensing his intelligence and drive, Davy secured him a job at the Royal Institution, where Davy ran the chemistry lab.

3. HE INVENTED A MOTOR WITH MAGNETS AND MERCURY.

By 1820, other scientists had shown that an electric current produces a magnetic field, and that two electrified wires produce a force on each other. Faraday thought there could be a way to harness these forces in a mechanical apparatus. In 1822, he built a device using a magnet, liquid mercury (which conducts electricity) and a current-carrying wire that turned electrical energy into mechanical energy—in other words, the first electric motor. Faraday noted the success in his journal [PDF]: "Very satisfactory, but make more sensible apparatus."

4. HE ALSO CREATED THE FIRST ELECTRIC GENERATOR.

A decade after his breakthrough with the motor, Faraday discovered that the movement of a wire through a stationary magnetic field can induce an electrical current in the wire—the principle of electromagnetic induction. To demonstrate it, Faraday built a machine in which a copper disc rotated between the two poles of a horseshoe magnet, producing its own power. The machine, later called the Faraday disc, became the first electric generator.

5. HE SHOWED THE PULL OF MAGNETIC FORCE.

In a brilliantly simple experiment (recreated by countless schoolchildren today), Faraday laid a bar magnet on a table and covered it with a piece of stiff paper. Then he sprinkled magnetized iron shavings across the paper, which immediately arranged themselves into semicircular arcs emanating from the ends—the north and south poles—of the magnet. In addition to revealing that magnets still exert pull through barriers, he visualized the pattern of magnetic force in space.

6. YOU CAN VISIT HIS MAGNETIC LABORATORY IN LONDON.

Faraday served in a number of scientific roles at the Royal Institution, an organization dedicated to promoting applied science. Eventually Faraday was appointed as its Fullerian Professor of Chemistry, a permanent position that allowed him to research and experiment to his heart's content. His magnetic laboratory from the 1850s is now faithfully replicated in the Royal Institution's Faraday Museum. It displays many of his world-changing gadgets, including an original Faraday disc, one of his early electrostatic generators, his chemical samples, and a giant magnet.

7. HE POPULARIZED NEW SCIENTIFIC TERMINOLOGY.

Faraday's work was so groundbreaking that no descriptors existed for many of his discoveries. With his fellow scientist William Whewell, Faraday coined a number of futuristic-sounding names for the forces and concepts he identified, such as electrode, anode, cathode, and ion. (Whewell himself coined the word "scientist" in 1834, after "natural philosopher" had become too vague to describe people working in increasingly specialized fields.)

8. PRINCE ALBERT GAVE HIM SOME SWEET REAL ESTATE.

In 1848, the Prince Consort, also known as Queen Victoria's husband Prince Albert, gave Faraday and his family a comfortable home at Hampton Court—not the royal palace, but near it—free of charge, to recognize his contributions to science. The house at 37 Hampton Court Road was renamed Faraday House until he died there on August 25, 1867. Now it's known simply by its street address.

9. HE WAS FEATURED ON THE UNITED KINGDOM'S £20 NOTE.

To honor Faraday's role in the advancement of British science, the Bank of England unveiled a £20 bill with his portrait on June 5, 1991. He joined an illustrious group of Britons with their own notes, including William Shakespeare, Florence Nightingale, and Isaac Newton. By the time it was withdrawn in February 2001, the bank estimated that about 120 million Faraday bills were in circulation (that's more than 2 billion quid).

Original image
Richard Bouhet // Getty
arrow
science
4 Expert Tips on How to Get the Most Out of August's Total Solar Eclipse
Original image
Richard Bouhet // Getty

As you might have heard, there’s a total solar eclipse crossing the U.S. on August 21. It’s the first total solar eclipse in the country since 1979, and the first coast-to-coast event since June 8, 1918, when eclipse coverage pushed World War I off the front page of national newspapers. Americans are just as excited today: Thousands are hitting the road to stake out prime spots for watching the last cross-country total solar eclipse until 2045. We’ve asked experts for tips on getting the most out of this celestial spectacle.

1. DON’T FRY YOUR EYES—OR BREAK THE BANK

To see the partial phases of the eclipse, you will need eclipse glasses because—surprise!—staring directly at the sun for even a minute or two will permanently damage your retinas. Make sure the glasses you buy meet the ISO 12312-2 safety standards. As eclipse frenzy nears its peak, shady retailers are selling knock-off glasses that will not adequately protect your eyes. The American Astronomical Society keeps a list of reputable vendors, but as a rule, if you can see anything other than the sun through your glasses, they might be bogus. There’s no need to splurge, however: You can order safe paper specs in bulk for as little as 90 cents each. In a pinch, you and your friends can take turns watching the partial phases through a shared pair of glasses. As eclipse chaser and author Kate Russo points out, “you only need to view occasionally—no need to sit and stare with them on the whole time.”

2. DON’T DIY YOUR EYE PROTECTION

There are plenty of urban legends about “alternative” ways to protect your eyes while watching a solar eclipse: smoked glass, CDs, several pairs of sunglasses stacked on top of each other. None works. If you’re feeling crafty, or don’t have a pair of safe eclipse glasses, you can use a pinhole projector to indirectly watch the eclipse. NASA produced a how-to video to walk you through it.

3. GET TO THE PATH OF TOTALITY

Bryan Brewer, who published a guidebook for solar eclipses, tells Mental Floss the difference between seeing a partial solar eclipse and a total solar eclipse is “like the difference between standing right outside the arena and being inside watching the game.”

During totality, observers can take off their glasses and look up at the blocked-out sun—and around at their eerily twilit surroundings. Kate Russo’s advice: Don’t just stare at the sun. “You need to make sure you look above you, and around you as well so you can notice the changes that are happening,” she says. For a brief moment, stars will appear next to the sun and animals will begin their nighttime routines. Once you’ve taken in the scenery, you can use a telescope or a pair of binoculars to get a close look at the tendrils of flame that make up the sun’s corona.

Only a 70-mile-wide band of the country stretching from Oregon to South Carolina will experience the total eclipse. Rooms in the path of totality are reportedly going for as much as $1000 a night, and news outlets across the country have raised the specter of traffic armageddon. But if you can find a ride and a room, you'll be in good shape for witnessing the spectacle.

4. PRESERVE YOUR NIGHT VISION

Your eyes need half an hour to fully adjust to darkness, but the total eclipse will last less than three minutes. If you’ve just been staring at the sun through the partial phases of the eclipse, your view of the corona during totality will be obscured by lousy night vision and annoying green afterimages. Eclipse chaser James McClean—who has trekked from Svalbard to Java to watch the moon blot out the sun—made this rookie mistake during one of his early eclipse sightings in Egypt in 2006. After watching the partial phases, with stray beams of sunlight reflecting into his eyes from the glittering sand and sea, McClean was snowblind throughout the totality.

Now he swears by a new method: blindfolding himself throughout the first phases of the eclipse to maximize his experience of the totality. He says he doesn’t mind “skipping the previews if it means getting a better view of the film.” Afterward, he pops on some eye protection to see the partial phases of the eclipse as the moon pulls away from the sun. If you do blindfold yourself, just remember to set an alarm for the time when the total eclipse begins so you don’t miss its cross-country journey. You'll have to wait 28 years for your next chance.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios