What Causes Brain Freeze?

Reader Susann writes in to ask, "What exactly is the cause of a brain freeze?"

You may know brain freeze by one of its other names: an ice cream headache, a cold-stimulus headache or sphenopalatine ganglioneuralgia ("nerve pain of the sphenopalatine ganglion"), but no matter what you call it, it hurts like hell.

Brain freeze is brought on by the speedy consumption of cold beverages or food. According to Dr. Joseph Hulihan, a former assistant professor in the Department of Neurology at the Temple University Health Sciences Center, ice cream is a very common cause of head pain, with about one third of a randomly selected population succumbing to ice cream headaches.

So what causes that pain?

As far back as the late 1960s, researchers pinned the blame on the same vascular mechanisms—rapid constriction and dilation of blood vessels—that were responsible for the aura and pulsatile pain phases of migraine headaches.

When something cold like ice cream touches the roof of your mouth, there is a rapid cooling of the blood vessels there, causing them to constrict. When the blood vessels warm up again, they experience rebound dilation. The dilation is sensed by pain receptors and pain signals are sent to the brain via the trigeminal nerve. This nerve (also called the fifth cranial nerve, the fifth nerve, or just V) is responsible for sensation in the face, so when the pain signals are received, the brain often interprets them as coming from the forehead and we perceive a headache.

With brain freeze, we're perceiving pain in an area of the body that's at a distance from the site of the actual injury or reception of painful stimulus. This is a quirk of the body called "referred pain," and it's the reason people often feel pain in their neck, shoulders and/or back instead of their chest during a heart attack.

To prevent brain freeze, try the following:

• Slow down. Eating or drinking cold food slowly allows one's mouth to get used to the temperature.

• Hold cold food or drink in the front part of your mouth and allow it to warm up before swallowing.

• Head north. Brain freeze requires a warm ambient temperature to occur, so its almost impossible for it to happen if you're already cold.

Now, back to Susann. Maybe you flossers can help her out. When she eats ice cream, it's not her brain that freezes, but her back. "I get a back freeze," she says. "What's up with that?" My guess would be it's a neurological quirk that has the brain interpreting the cold stimulus and pain signals as coming from her back. But I'm not a doctor, I just play one on the web. Anyone with a little more authority have a better idea?

[Image courtesy of Donuts4Dinner]

Do Lobsters Really Mate for Life?

iStock
iStock

It's a pop culture trope that mated lobsters stay together until they die. But is it true?

Nope. While plenty of animals practice long-term monogamy, lobsters are not among them. Lobsters actually mate by a weird system of serial monogamy. It's not exactly a one-night stand, but it's not a lifelong commitment either. Instead, a bunch of females take turns having a fling with the local dominant male that lasts a week or two and, if they're not happy with the amount of genetic material he's provided, then seek a little extra action.

It works like this: A female lobster who's ready to mate (which they can only do right after they've molted) hangs out near the den of the local dominant male and fans her pheromone-laced urine into his home. This relaxes the male, making him less aggressive and more receptive to mating. Then there's a brief courtship, and the male allows the female into his den.

Anywhere from a few hours to a few days later, the female slips into something a little more comfortable by shedding her exoskeleton. (Shacking up with the neighborhood tough guy guarantees her protection during this vulnerable time.) The pair mates, and the male deposits his sperm in the female. Once her new shell has hardened a week or two later, she takes off, and another female can have her turn. Often, the females in an area will stagger the timing of their molts to make their reproductive conga line more efficient. As soon as one female is done with the stud, the next one is already waiting to pee on his doorstep.

Sometimes, the male doesn't provide enough sperm to fully fertilize all of a female's eggs. In these cases, she'll leave before her new shell finishes forming to find and mate with another male (or males) until she collects enough sperm. Usually this requires just an extra dalliance or two, but as many as 10 have been reported.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Could an Astronaut Steal a Rocket and Lift Off, Without Mission Control?

iStock
iStock

C Stuart Hardwick:

Not with any rocket that has ever thus far carried a person into orbit from Earth, no. Large rockets are complex, their launch facilities are complex, their trajectories are complex, and the production of their propellants is complex.

Let me give you one simple example:

  • Let’s say astro-Sally is the last woman on Earth, and is fully qualified to fly the Saturn-V.
  • Further, let’s say the Rapture (which as I understand it, is some sort of hip-hop induced global catastrophe that liquefies all the people) has left a Saturn-V sitting on the pad, raring to go.
  • Further, let’s grant that, given enough time, astro-Sally can locate sufficient documentation to operate the several dozen controls needed to pump the first stage propellant tanks full of kerosene.
  • Now what? Oxidizer, right? Wrong. First, she has to attend to the batteries, oxygen, hydrogen, and helium pressurant tanks in her spacecraft, otherwise it’s going to be a short, final flight. And she’ll need to fill the hypergolics for the spacecraft propulsion and maneuvering systems. If she screws that up, the rocket will explode with her crawling on it. If she gets a single drop of either of these on her skin or in her lungs, she’ll die.
  • But okay, maybe all the hypergolics were already loaded (not safe, but possible) and assume she manages to get the LOX, H2, and HE tanks ready without going Hindenburg all over the Cape.
  • And…let’s just say Hermione Granger comes back from the Rapture to work that obscure spell, propellantus preparum.
  • All set, right? Well, no. See, before any large rocket can lift off, the water quench system must be in operation. Lift off without it, and the sound pressure generated by the engines will bounce off the pad, cave in the first stage, and cause 36 stories of rocket to go “boom.”
  • So she searches the blockhouse and figures out how to turn on the water quench system, then hops in the director’s Tesla (why not?) and speeds out to the pad, jumps in the lift, starts up the gantry—and the water quench system runs out of water ... Where’d she think that water comes from? Fairies? No, it comes from a water tower—loaded with an ample supply for a couple of launch attempts. Then it must be refilled.

Now imagine how much harder this would all be with the FBI on your tail.

Can a rocket be built that’s simple enough and automated enough to be susceptible to theft? Sure. Have we done so? Nope. The Soyuz is probably the closest—being highly derived from an ICBM designed to be “easy” to launch, but even it’s really not very close.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios