Je suis en Paris! 8 Things I Learned on Vacation

Part of the reason I moved to England was so I would be able to more easily travel to other parts of Europe and the world. This week, that dream was realized: I'm in Paris, just a hop, skip, and two-and-a-half hour train ride from my home.

France is about four-fifths the size of Texas, making it the largest western European country, and is, according to a BBC survey, the fourth most popular country in the world. Paris, its largest city, is a dreamscape of curlicue ironwork, grandiose statues, and leafy boulevards, which, especially in the warmer months, tends to smell alternately of baguettes, cheese, and urine (seriously).

We're currently staying in the fabled Montmartre area, once home to bohemian artists, writers, and hangers-on, now home to artists, tourists and aggressive guys who try to coerce you into buying 20 euro string bracelets. For the most part, it's been all picnics by the Seine, falling asleep in the odd museum, eating far too many baguettes, and generally celebrating the old Parisian joie de vivre. I am, however, looking forward to returning home to England, where my red and peeling nose may finally allow me to be accepted as one of their own "“ not having seen the sun in a few months, I, like other English holiday-makers before me, got a little bit too excited about it.

Anyway, I'm taking a brief break from all that baguette-ing and fromage-ing and meandering up quaint streets to offer up a few quick interesting things that I've learned about France (aside from the fact that people here will pee on anything that stands still and a few things that won't).

Also, while on this trip, I've been reading Lucy Wadham's The Secret Life of France, which has been invaluable in compiling this list as well as extremely entertaining.

1. There's a phenomenon in France called "Yoghurt," when Francophone folks sing (loudly) bizarre homophonic versions of English songs, with oftentimes comic results: Queen's "I Want to Break Free" becomes "I Want to Steak Frites." It's like Franglais, but slightly less intelligible.

2. France is the world's leading consumer of psychotropic drugs, whether prescribed by a physician or not; that fact alone is interesting, but consider also that the suppository tends to be the preferred method of medicinal delivery in France. Of course, France has some of the best healthcare in the world, so maybe suppositories and psychotropic drugs are the way to go.

Baby_Bottles_of_Wine_Paris3. The country that birthed the restaurant industry, France is still on the vanguard of strange innovation in eateries. There's Au Refuge des Fondus, a fondue place in Montmarte that serves up wine in baby bottles, complete with the nipples; at Dans Le Noir, you eat entirely in the dark, served by blind waiters; and at Le Tresor, there's a goldfish swimming in the toilet.

4. "Paris Syndrome" is a medically recognized phenomenon, a psychological breakdown that occurs when Japanese tourists travel to Paris and find the city of their imagination is nothing like the reality. So far, I haven't found myself curled in the fetal position and rocking after being yelled at by a waiter, but there's still time.

5. In the aftermath of the French revolution, it was popular to host dinner parties featuring entirely black food: black wine, black eggs, black cakes, black whatevers, sometimes served in funerary inspired dinnerware. And you could bring a live pig to the table. True story.

6. Ever a people who appreciate a good uprising, this recent global recession has prompted a series of "boss-nappings" in France: Workers have literally been kidnapping their bosses or barricading them in their offices to protest real or rumored job cuts.

catacomb7. Perhaps one of the creepiest, although most popular tourist attractions in Paris are the Catacombs, an underground ossuary containing the remains of thousands of Parisians. In the late 17th century, Paris's officials finally decided to dismantle the Les Innocents cemetery, which was so overcrowded with poorly buried bodies that it was actually making the residents of the nearby Les Halles area ill, and to move the bodies to a network of underground mines and tunnels under the city. The bodies, blessed by priests, were conducted to their new home via black-shrouded carts under the cover of night and were then stacked in regular piles underground.

The successful move of Les Innocents opened the floodgates and over the next century, more of Paris's cemeteries would be emptied and the bodies moved underground. In the 19th century, the Inspector General of the catacombs had the idea of placing the bones in decorative designs (hearts, crosses, etc.) to increase tourism. Visitors would walk the winding subterranean paths through the bones armed only with a candle and following a black line painted on the ceiling above. It's been open to the curious public ever since, although only around 200 people are allowed in at a time, to make the two-kilometer trek. Dark, damp and close, the catacombs were perhaps one of the most surreal and coolest things I've seen in a long time.

8. Now, I haven't gone up the Eiffel Tower yet because I'm pretty afraid of heights and while I'm sure the view is lovely, I'm content to look at pictures. And then there's the fact that it moves: The top of the tower actually leans away from the sun, moving as much as 18 centimeters as the metal on the sunny side expands in the heat. In hot weather, it's been known to grow 15 centimeters taller during warm weather. Not much, but too much for me.

Live Smarter
Nervous About Asking for a Job Referral? LinkedIn Can Now Do It for You

For most people, asking for a job referral can be daunting. What if the person being approached shoots you down? What if you ask the "wrong" way? LinkedIn, which has been aggressively establishing itself as a catch-all hub for employment opportunities, has a solution, as Mashable reports.

The company recently launched "Ask for a Referral," an option that will appear to those browsing job listings. When you click on a job listed by a business that also employs one of your LinkedIn first-degree connections, you'll have the opportunity to solicit a referral from that individual.

The default message that LinkedIn creates is somewhat generic, but it hits the main topics—namely, prompting you to explain how you and your connection know one another and why you'd be a good fit for the position. If you're the one being asked for a referral, the site will direct you to the job posting and offer three prompts for a response, ranging from "Sure…" to "Sorry…".

LinkedIn says the referral option may not be available for all posts or all users, as the feature is still being rolled out. If you do see the option, it will likely pay to take advantage of it: LinkedIn reports that recruiters who receive both a referral and a job application from a prospective hire are four times more likely to contact that individual.

[h/t Mashable]

Dean Mouhtaropoulos/Getty Images
Essential Science
What Is a Scientific Theory?
Dean Mouhtaropoulos/Getty Images
Dean Mouhtaropoulos/Getty Images

In casual conversation, people often use the word theory to mean "hunch" or "guess": If you see the same man riding the northbound bus every morning, you might theorize that he has a job in the north end of the city; if you forget to put the bread in the breadbox and discover chunks have been taken out of it the next morning, you might theorize that you have mice in your kitchen.

In science, a theory is a stronger assertion. Typically, it's a claim about the relationship between various facts; a way of providing a concise explanation for what's been observed. The American Museum of Natural History puts it this way: "A theory is a well-substantiated explanation of an aspect of the natural world that can incorporate laws, hypotheses and facts."

For example, Newton's theory of gravity—also known as his law of universal gravitation—says that every object, anywhere in the universe, responds to the force of gravity in the same way. Observational data from the Moon's motion around the Earth, the motion of Jupiter's moons around Jupiter, and the downward fall of a dropped hammer are all consistent with Newton's theory. So Newton's theory provides a concise way of summarizing what we know about the motion of these objects—indeed, of any object responding to the force of gravity.

A scientific theory "organizes experience," James Robert Brown, a philosopher of science at the University of Toronto, tells Mental Floss. "It puts it into some kind of systematic form."


A theory's ability to account for already known facts lays a solid foundation for its acceptance. Let's take a closer look at Newton's theory of gravity as an example.

In the late 17th century, the planets were known to move in elliptical orbits around the Sun, but no one had a clear idea of why the orbits had to be shaped like ellipses. Similarly, the movement of falling objects had been well understood since the work of Galileo a half-century earlier; the Italian scientist had worked out a mathematical formula that describes how the speed of a falling object increases over time. Newton's great breakthrough was to tie all of this together. According to legend, his moment of insight came as he gazed upon a falling apple in his native Lincolnshire.

In Newton's theory, every object is attracted to every other object with a force that’s proportional to the masses of the objects, but inversely proportional to the square of the distance between them. This is known as an “inverse square” law. For example, if the distance between the Sun and the Earth were doubled, the gravitational attraction between the Earth and the Sun would be cut to one-quarter of its current strength. Newton, using his theories and a bit of calculus, was able to show that the gravitational force between the Sun and the planets as they move through space meant that orbits had to be elliptical.

Newton's theory is powerful because it explains so much: the falling apple, the motion of the Moon around the Earth, and the motion of all of the planets—and even comets—around the Sun. All of it now made sense.


A theory gains even more support if it predicts new, observable phenomena. The English astronomer Edmond Halley used Newton's theory of gravity to calculate the orbit of the comet that now bears his name. Taking into account the gravitational pull of the Sun, Jupiter, and Saturn, in 1705, he predicted that the comet, which had last been seen in 1682, would return in 1758. Sure enough, it did, reappearing in December of that year. (Unfortunately, Halley didn't live to see it; he died in 1742.) The predicted return of Halley's Comet, Brown says, was "a spectacular triumph" of Newton's theory.

In the early 20th century, Newton's theory of gravity would itself be superseded—as physicists put it—by Einstein's, known as general relativity. (Where Newton envisioned gravity as a force acting between objects, Einstein described gravity as the result of a curving or warping of space itself.) General relativity was able to explain certain phenomena that Newton's theory couldn't account for, such as an anomaly in the orbit of Mercury, which slowly rotates—the technical term for this is "precession"—so that while each loop the planet takes around the Sun is an ellipse, over the years Mercury traces out a spiral path similar to one you may have made as a kid on a Spirograph.

Significantly, Einstein’s theory also made predictions that differed from Newton's. One was the idea that gravity can bend starlight, which was spectacularly confirmed during a solar eclipse in 1919 (and made Einstein an overnight celebrity). Nearly 100 years later, in 2016, the discovery of gravitational waves confirmed yet another prediction. In the century between, at least eight predictions of Einstein's theory have been confirmed.


And yet physicists believe that Einstein's theory will one day give way to a new, more complete theory. It already seems to conflict with quantum mechanics, the theory that provides our best description of the subatomic world. The way the two theories describe the world is very different. General relativity describes the universe as containing particles with definite positions and speeds, moving about in response to gravitational fields that permeate all of space. Quantum mechanics, in contrast, yields only the probability that each particle will be found in some particular location at some particular time.

What would a "unified theory of physics"—one that combines quantum mechanics and Einstein's theory of gravity—look like? Presumably it would combine the explanatory power of both theories, allowing scientists to make sense of both the very large and the very small in the universe.


Let's shift from physics to biology for a moment. It is precisely because of its vast explanatory power that biologists hold Darwin's theory of evolution—which allows scientists to make sense of data from genetics, physiology, biochemistry, paleontology, biogeography, and many other fields—in such high esteem. As the biologist Theodosius Dobzhansky put it in an influential essay in 1973, "Nothing in biology makes sense except in the light of evolution."

Interestingly, the word evolution can be used to refer to both a theory and a fact—something Darwin himself realized. "Darwin, when he was talking about evolution, distinguished between the fact of evolution and the theory of evolution," Brown says. "The fact of evolution was that species had, in fact, evolved [i.e. changed over time]—and he had all sorts of evidence for this. The theory of evolution is an attempt to explain this evolutionary process." The explanation that Darwin eventually came up with was the idea of natural selection—roughly, the idea that an organism's offspring will vary, and that those offspring with more favorable traits will be more likely to survive, thus passing those traits on to the next generation.


Many theories are rock-solid: Scientists have just as much confidence in the theories of relativity, quantum mechanics, evolution, plate tectonics, and thermodynamics as they do in the statement that the Earth revolves around the Sun.

Other theories, closer to the cutting-edge of current research, are more tentative, like string theory (the idea that everything in the universe is made up of tiny, vibrating strings or loops of pure energy) or the various multiverse theories (the idea that our entire universe is just one of many). String theory and multiverse theories remain controversial because of the lack of direct experimental evidence for them, and some critics claim that multiverse theories aren't even testable in principle. They argue that there's no conceivable experiment that one could perform that would reveal the existence of these other universes.

Sometimes more than one theory is put forward to explain observations of natural phenomena; these theories might be said to "compete," with scientists judging which one provides the best explanation for the observations.

"That's how it should ideally work," Brown says. "You put forward your theory, I put forward my theory; we accumulate a lot of evidence. Eventually, one of our theories might prove to obviously be better than the other, over some period of time. At that point, the losing theory sort of falls away. And the winning theory will probably fight battles in the future."


More from mental floss studios