Original image

7 Names Inspired By Poetry

Original image

From Shakespeare to Sylvia Plath, Gilgamesh to Dylan, poets have left an indelible mark on our culture. Let's take a look at a few famous things named after poets and their works as we explore the awesome influence of poetry in modern culture.

1. The Evangeline Trail
Along the coast of Nova Scotia winds the striking Evangeline Trail, a path through some of North America's oldest European settlements, spanning almost 400 years of culture and natural beauty. It was christened for the title character in Evangeline, A Tale of Acadie, a poem by Henry Wadsworth Longfellow. On this track, you can speed along 181 miles of coastline through villages and forts and finally hop on a ferry to the eastern edge of Maine. Driving in dactylic hexameter is optional.

2. The Baltimore Ravens
The NFL team currently residing in Baltimore is actually named for Edgar Allen Poe's The Raven. I can only imagine the quote "What this grim, ungainly, ghastly, gaunt, and ominous bird of yore / meant in croaking `Nevermore'" is some vague allusion to Ray Lewis during a night club confrontation.

3. Your Achilles' Heel

Achilles had it all. Greek hero? Check. Awesome fighting skills? Check. Most handsome fighter aligned against Troy? Double check. Invincibility? Well, almost. Legend had it that his mother dipped him in the river Styx as a baby, granting him invulnerability except for an area on his ankle where she lowered him into the waters. My mother tried something similar with me: she listened to Styx non-stop when I was in the womb. (All I received were weak knees and chronic asthma.)

The common misconception is that Achilles' death (and hence the origin of the phrase Achilles' Heel) appears in Homer's Iliad. It did not. However, this tale actually made several appearances in other ancient Greek and Roman mythical poetry and, in 1693, a Flemish and Dutch anatomist by the name of Philip Verheyen first designated the tendon in the back of the ankle for ancient hero.

4. FLW's Favorite Statue
Richard Brock, an artist who worked closely with Frank Lloyd Wright, created a statue depicting the muse of architecture constructing a spire from geometric building blocks. Named for an Alfred, Lord Tennyson poem, Flower In The Crannied Wall still remains at Wright's home in Spring Green, Wisconsin. It was one of Wright's favorite statues, although in recent years it has fallen into slight disrepair.

5. Clipper Ships & Whisky
Robert Burns' poem Tam o' Shanter is a tale of drinking, morality, desire and relationships in general. Written in a combination of English and Scots, the main character is drawn to Nannie Dee, a dancing witch with a Cutty-sark (a blouse or undergarment) much too small for her. Overcome with attraction, he eventually cries out, "Weel done, Cutty-sark." It's a powerful metaphor for lust and regret.

Perfect name for a whisky, right? Actually, the whisky takes it's name from the last merchant clipper ship ever constructed, The Cutty-Sark. Launched in 1869, it had Nannie Dee as her figurehead.

6. What Dreams May Come
The 1998 film What Dreams May Come was based on the novel by Richard Matheson. The title itself appears as a line in one of the most famous soliloquies from Shakespeare, Hamlet's "To be, or not to be":

For in that sleep of death what dreams may come
When we have shuffled off this mortal coil

If you have happened across this visually stunning movie about life, death, the soul and the afterlife, you know how well the title fits.

7. The Baudelaire Family
French poet Charles Pierre Baudelaire was a bit of a sensationalist or, at the very least, a provocateur during his lifetime. Check out this quote about his views on pleasure:

Personally, I think that the unique and supreme delight lies in the certainty of doing 'evil' -- and men and women know from birth that all pleasure lies in evil.

We'll go ahead and call him the anti-Google. But for those of you familiar with the 13 books in A Series of Unfortunate Events, you may recognize the surname. The Baudelaire family are the protagonists.
* * * * *
We've obviously just scratched the surface. What are some other examples of media, architecture or geography named for poems or poets?

[Image courtesy of Pedal & Sea Adventures.]


Original image
iStock // Ekaterina Minaeva
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Scientists Think They Know How Whales Got So Big
May 24, 2017
Original image

It can be difficult to understand how enormous the blue whale—the largest animal to ever exist—really is. The mammal can measure up to 105 feet long, have a tongue that can weigh as much as an elephant, and have a massive, golf cart–sized heart powering a 200-ton frame. But while the blue whale might currently be the Andre the Giant of the sea, it wasn’t always so imposing.

For the majority of the 30 million years that baleen whales (the blue whale is one) have occupied the Earth, the mammals usually topped off at roughly 30 feet in length. It wasn’t until about 3 million years ago that the clade of whales experienced an evolutionary growth spurt, tripling in size. And scientists haven’t had any concrete idea why, Wired reports.

A study published in the journal Proceedings of the Royal Society B might help change that. Researchers examined fossil records and studied phylogenetic models (evolutionary relationships) among baleen whales, and found some evidence that climate change may have been the catalyst for turning the large animals into behemoths.

As the ice ages wore on and oceans were receiving nutrient-rich runoff, the whales encountered an increasing number of krill—the small, shrimp-like creatures that provided a food source—resulting from upwelling waters. The more they ate, the more they grew, and their bodies adapted over time. Their mouths grew larger and their fat stores increased, helping them to fuel longer migrations to additional food-enriched areas. Today blue whales eat up to four tons of krill every day.

If climate change set the ancestors of the blue whale on the path to its enormous size today, the study invites the question of what it might do to them in the future. Changes in ocean currents or temperature could alter the amount of available nutrients to whales, cutting off their food supply. With demand for whale oil in the 1900s having already dented their numbers, scientists are hoping that further shifts in their oceanic ecosystem won’t relegate them to history.

[h/t Wired]