CLOSE
Original image

Don't Eat the Marshmallow

Original image

In the late 1960s, researchers at Stanford devised what's now known as the "marshmallow test" to test participants' ability to defer gratification. The test went like this: put a marshmallow on the table in front of a four-year-old; tell the child that he or she can either eat the marshmallow now, or leave it uneaten for a while (15-20 minutes) and receive a second marshmallow at the end of the test; have the researcher leave the room for the prescribed period of time; if the child sits alone with the marshmallow for the test period and does not eat the treat, the researcher returns and gives the child two marshmallows to eat. This a test of delayed gratification -- the ability for a person to put off the instant thrill of one marshmallow for the promise of two marshmallows down the road. What's interesting is that the test is apparently predictive of future life success. If a four-year-old delays gratification (which is pretty rare), that kid will very likely grow up to be a very successful adult. Read on for more details.

A recent New Yorker article on the Stanford research is very compelling. (The research also involved treats other than marshmallows -- including small toys and other treats -- presumably to control for kids who just don't like marshmallows.) Here's a snippet (emphasis added):

Most of the children [struggled] to resist the treat and held out for an average of less than three minutes. "A few kids ate the marshmallow right away," Walter Mischel, the Stanford professor of psychology in charge of the experiment, remembers. "They didn't even bother ringing the bell. Other kids would stare directly at the marshmallow and then ring the bell thirty seconds later." About thirty per cent of the children, however, were like Carolyn. They successfully delayed gratification until the researcher returned, some fifteen minutes later. These kids wrestled with temptation but found a way to resist.

... Once Mischel began analyzing the results, he noticed that low delayers, the children who rang the bell quickly, seemed more likely to have behavioral problems, both in school and at home. They got lower S.A.T. scores. They struggled in stressful situations, often had trouble paying attention, and found it difficult to maintain friendships. The child who could wait fifteen minutes had an S.A.T. score that was, on average, two hundred and ten points higher than that of the kid who could wait only thirty seconds.

Wow. Read the rest to learn more about this research, how it came about, and what it might mean about you. (Also, I dare you to try this with your own kids!) After the jump, a related TED Talk and some more links on how to conduct your own marshmallow test.

Here's a brief TED Talk about the marshmallow experiment by Joachim de Posada -- including some goofy video of actual kids taking the test:

See also: how to administer the marshmallow experiment, and Wikipedia on deferred gratification. (Marshmallow image from Wikipedia, used under Creative Commons license.)

Original image
iStock
arrow
science
Why Adding Water to Your Whiskey Makes It Taste Better
Original image
iStock

Don’t ever let people tease you for watering down your whiskey. If they’re true aficionados, they’ll know that adding a splash of water or a few cubes of ice to your drink will actually enhance its natural flavors. But how can something as flavorless as water make a barrel-aged scotch or bourbon taste even better? Chemists think they’ve found the answer.

As The Verge reports, researchers from the Linnæus University Centre for Biomaterials Chemistry in Sweden analyzed the molecular composition of whiskey in the presence of water. We already know that the molecule guaiacol is largely responsible for whiskey’s smoky taste and aroma. Guaiacol bonds to alcohol molecules, which means that in straight whisky that guaiacol flavor will be fairly evenly distributed throughout the cask. Alcohol is repelled by water, and guaiacol partially so. That means when a splash of the water is added to the beverage the alcohol gets pushed to the surface, dragging the guaiacol along with it. Concentrated at the top of the glass, the whiskey’s distinctive taste and scent is in the perfect position to be noticed by the drinker.

According to the team’s experiments, which they laid out in the journal Scientific Reports [PDF], whiskey that’s been diluted down to 40 percent to 45 percent alcohol content will start to show more guaiacol sloshing near the surface. Most commercial whiskey is already diluted before it's bottled, so the drink you order in a bar should fall within this range to begin with. Adding additional water or ice will boost the flavor-enhancing effect even further.

As for just how much water to add, the paper doesn’t specify. Whiskey lovers will just have to conduct some experiments of their own to see which ratios suit their palate.

[h/t NPR]

Original image
Gray, George Robert; Hullmandel & Walton; Hullmandel, Charles Joseph; Mitchell, D. W / Public Doman
arrow
Animals
DNA Tests Show ‘Extinct’ Penguin Species Never Existed
Original image
Gray, George Robert; Hullmandel & Walton; Hullmandel, Charles Joseph; Mitchell, D. W / Public Doman

Science is a self-correcting process, ever in flux. Accepted hypotheses are overturned in the face of new information. The world isn’t flat after all. Disease isn’t caused by demons or wickedness. And that Hunter Island penguin? Yeah, apparently that was just a figment of our imaginations. Researchers writing in the Zoological Journal of the Linnean Society say the remains of one supposed species are in fact a “jumbled mixture” of bones from three extant species.

The bones were unearthed in the 1980s during the excavation of a prehistoric trash heap on Tasmania’s Hunter Island. Two scientists named Tets and O’Connor argued that the remains were different enough from other penguins to constitute their own genus and species, one which must have died out during the Holocene epoch. The proud potential penguin parents dubbed the apparently extinct bird Tasidyptes hunterivan, and that was that.

Except that this is science, where no story is ever really over. Other biologists were not satisfied with the evidence Tets and O’Connor presented. There were only four bones, and they all bore some resemblance to species that exist today. Fortunately, in 2017, we’ve got ways of making fossils talk. A research team led by Tess Cole of the University of Otago used DNA barcoding to examine the genetic code of each of the four bones.

“It was a fun and unexpected story,” Cole said in a statement, “because we show that Tasmania’s ‘extinct' penguin is not actually an extinct or unique penguin at all.”

Snares penguins dive into the water.
Snares penguins (Eudyptes robustus).
Brocken Inaglory, Wikimedia Commons // CC BY-SA 3.0

The bones were “a jumbled mixture of three living penguin species, from two genera": the Fiordland crested penguin or Tawaki (Eudyptes pachyrhynchus) and the Snares crested penguin (Eudyptes robustus), both of New Zealand, and the Australian little fairy penguin (Eudyptula novaehollandiae).

“This study shows how useful ancient DNA testing can be,” Cole said. “Not only does it help us identify new but extinct species, but it can help us rule out previously postulated species which did not exist, as in this case.”

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios