Original image

Origins of the Specious Contest Winners

Original image

Last May, we welcomed grammar legend Patricia T. O'Conner as a guest blogger. Last Friday, we offered you a chance to win a copy of her new book by inventing a fake backstory for a word or phrase origin.

After consulting our in-house experts, we've selected two winners. The envelope please...

From Vincent:

Why do we say that we "coin" new words?

Many credit Samuel Johnson with the creation of the first English dictionary, but there were in fact numerous previous efforts to catalog the language prior to his seminal accomplishment. The earliest attempts were notably inadequate, much to the dismay of writers and publishers at the time.

Charles Bradbury was a businessman and entrepreneur in the late 17th century. Seeing the need for an exhaustive record of English words, he sought to compile the definitive collection. However, he did not have a literary background so he was ill-equipped to personally author such a book. Instead, he offered payment of one pence to anyone that could provide him with a word that wasn't already on his list. News spread that someone was offering "a coin a word" and soon his door was flooded with paupers looking to make some easy money.

Bradbury was unprepared for the inundation of people, and even more unprepared for their creativity. His list was quickly filled with the most common words, so naturally he began to deny payment for repeated items. Instead of simply leaving, the people started offering profanity, slang, and straight-up fabrications in an attempt to receive their coins.

The event was a disaster and Bradbury was forced to retract his offer. His lexicon never saw the light of day, and he retired in shame. However, while Charles Bradbury may have faded from memory, the "coin a word" promotion was not as easily forgotten. The phrase gradually shifted in usage, and "coin" is now a verb used primarily in reference to neologisms.

From Myleti:

The word "book" originated many, many years ago, but nobody knows why. Long ago in old England, there was a smart chap, both intelligent and smartly dressed who was awfully tired of carting around masses of loose papers and pamphlets. He had an unquenchable thirst for knowledge and always took notes and asked for information anywhere he went. This left him with huge amounts of notes and loose papers. One day, whilst touring a trunk and case factory, he came across boxes and boxes full of extraordinarily thin pieces of wood, covered in leather that were cast-offs of the trunk makers. He decided to surreptitiously steal a few pieces to take home with him. He took his stolen goods home and borrowed his wife's needle and some thick twine and sewed a few of his pages and pamphlets together, then glued the front and back to the wood. He called his wife into the room and proclaimed loudly, "Look! Now we can bring our own knowledge everywhere without worrying about losing pages!"

He decided to call his invention a B.O.O.K.E, or "Bring our own knowledge everywhere", which was later shortened to "book" by people who were too lazy to use the final E.

Recaptcha-Thomas Fischer [I think that makes a wonderful name for my character!]

Congrats, Vincent & Myleti! I'll be in touch about your prizes. Thanks to everyone who entertained us with their entries. For more info on Patricia O'Conner's new book, head over to her blog.

Original image
iStock // Ekaterina Minaeva
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Nick Briggs/Comic Relief
What Happened to Jamie and Aurelia From Love Actually?
May 26, 2017
Original image
Nick Briggs/Comic Relief

Fans of the romantic-comedy Love Actually recently got a bonus reunion in the form of Red Nose Day Actually, a short charity special that gave audiences a peek at where their favorite characters ended up almost 15 years later.

One of the most improbable pairings from the original film was between Jamie (Colin Firth) and Aurelia (Lúcia Moniz), who fell in love despite almost no shared vocabulary. Jamie is English, and Aurelia is Portuguese, and they know just enough of each other’s native tongues for Jamie to propose and Aurelia to accept.

A decade and a half on, they have both improved their knowledge of each other’s languages—if not perfectly, in Jamie’s case. But apparently, their love is much stronger than his grasp on Portuguese grammar, because they’ve got three bilingual kids and another on the way. (And still enjoy having important romantic moments in the car.)

In 2015, Love Actually script editor Emma Freud revealed via Twitter what happened between Karen and Harry (Emma Thompson and Alan Rickman, who passed away last year). Most of the other couples get happy endings in the short—even if Hugh Grant's character hasn't gotten any better at dancing.

[h/t TV Guide]