CLOSE

Recovering NASA History in an Abandoned McDonald's

In 1966, NASA's Lunar Orbiter program performed a detailed survey of the moon's surface. The Orbiters mapped the moon in exquisite detail, searching for suitable places that later missions could use as landing sites. The Orbiters sent back their data via an amazingly complex system employing 70mm cameras, optical scanners running in space, analog lossless image compression, and radio transmitters. The data was stored back on Earth on 2,500 reels of 2-inch tape. Where this story gets interesting is what happened to those tapes.

By the 1970s, the tapes were just a mountain of forgotten junk taking up space in storage. When NASA archivist Nancy Evans was asked whether it was okay to destroy the tapes (they were being removed from storage, presumably to free up space), she refused -- and took on the job of preserving them herself. Evans took on the 2,500 reels herself and began a private mission to preserve and read them. But the challenge of actually getting the data off the tapes took her over thirty years: she had to find extremely rare Ampex FR-900 tape drives to read the tapes -- only a few dozen were ever made -- and when she finally located the drives, none of them worked.

By 2005, Evans was retired and frustrated. She had the tapes and a pile of nonfunctional drives, but NASA refused to restore them, estimating repair costs at $6 million. That's when Evans went public with the tapes, and assembled a ragtag crew of space aficionados who managed to restore the machines, process the tapes, and recover the images -- never before seen in their original quality -- all in an abandoned McDonald's donated by NASA (which, to its credit, did eventually fund the project). After the jump, check out an AP video report on the story:

The LA Times has a terrific piece going into much more detail. There's some more information at the Lunar Orbiter site, including photos like the one above of the McDonald's facility used to process the tapes. There's also a good Metafilter thread on the story, with some extra links in the comments.

(Via Waxy.org.)

nextArticle.image_alt|e
iStock
arrow
Space
Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System
iStock
iStock

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

nextArticle.image_alt|e
iStock
arrow
science
Ocean Waves Are Powerful Enough to Toss Enormous Boulders Onto Land, Study Finds
iStock
iStock

During the winter of 2013-2014, the UK and Ireland were buffeted by a number of unusually powerful storms, causing widespread floods, landslides, and coastal evacuations. But the impact of the storm season stretched far beyond its effect on urban areas, as a new study in Earth-Science Reviews details. As we spotted on Boing Boing, geoscientists from Williams College in Massachusetts found that the storms had an enormous influence on the remote, uninhabited coast of western Ireland—one that shows the sheer power of ocean waves in a whole new light.

The rugged terrain of Ireland’s western coast includes gigantic ocean boulders located just off a coastline protected by high, steep cliffs. These massive rocks can weigh hundreds of tons, but a strong-enough wave can dislodge them, hurling them out of the ocean entirely. In some cases, these boulders are now located more than 950 feet inland. Though previous research has hypothesized that it often takes tsunami-strength waves to move such heavy rocks onto land, this study finds that the severe storms of the 2013-2014 season were more than capable.

Studying boulder deposits in Ireland’s County Mayo and County Clare, the Williams College team recorded two massive boulders—one weighing around 680 tons and one weighing about 520 tons—moving significantly during that winter, shifting more than 11 and 13 feet, respectively. That may not sound like a significant distance at first glance, but for some perspective, consider that a blue whale weighs about 150 tons. The larger of these two boulders weighs more than four blue whales.

Smaller boulders (relatively speaking) traveled much farther. The biggest boulder movement they observed was more than 310 feet—for a boulder that weighed more than 44 tons.

These boulder deposits "represent the inland transfer of extraordinary wave energies," the researchers write. "[Because they] record the highest energy coastal processes, they are key elements in trying to model and forecast interactions between waves and coasts." Those models are becoming more important as climate change increases the frequency and severity of storms.

[h/t Boing Boing]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios