8 Brilliant Scientific Screw-ups

iStock
iStock

By Eric Elfman

Hard work and dedication have their time and place, but the values of failure and ineptitude have gone unappreciated for far too long. They say that patience is a virtue, but the following eight inventions prove that laziness, slovenliness, clumsiness and pure stupidity can be virtues, too.

1. Anesthesia (1844)

Mistake Leading to Discovery: Recreational drug use
Lesson Learned: Too much of a good thing can sometimes be, well, a good thing

Nitrous oxide was discovered in 1772, but for decades the gas was considered no more than a party toy. People knew that inhaling a little of it would make you laugh (hence the name "laughing gas"), and that inhaling a little more of it would knock you unconscious. But for some reason, it hadn't occurred to anyone that such a property might be useful in, say, surgical operations.

Finally, in 1844, a dentist in Hartford, Conn., named Horace Wells came upon the idea after witnessing a nitrous mishap at a party. High on the gas, a friend of Wells fell and suffered a deep gash in his leg, but he didn't feel a thing. In fact, he didn't know he'd been seriously injured until someone pointed out the blood pooling at his feet.

To test his theory, Wells arranged an experiment with himself as the guinea pig. He knocked himself out by inhaling a large does of nitrous oxide, and then had a dentist extract a rotten tooth from his mouth. When Wells came to, his tooth had been pulled painlessly.

To share his discovery with the scientific world, he arranged to perform a similar demonstration with a willing patient in the amphitheatre of the Massachusetts General Hospital. But things didn't exactly go as planned. Not yet knowing enough about the time it took for the gas to kick in, Wells pulled out the man's tooth a little prematurely, and the patient screamed in pain. Wells was disgraced and soon left the profession. Later, after being jailed while high on chloroform, he committed suicide. It wasn't until 1864 that the American Dental Association formally recognized him for his discovery.

2. Iodine (1811)

Mistake Leading to Discovery: Industrial accident
Lesson Learned: Seaweed is worth its weight in salt

In the early 19th century, Bernard Courtois was the toast of Paris. He had a factory that produced saltpeter (potassium nitrate), which was a key ingredient in ammunition, and thus a hot commodity in Napoleon's France. On top of that, Courtois had figured out how to fatten his profits and get his saltpeter potassium for next to nothing. He simply took it straight from the seaweed that washed up daily on the shores. All he had to do was collect it, burn it, and extract the potassium from the ashes.

One day, while his workers were cleaning the tanks used for extracting potassium, they accidentally used a stronger acid than usual. Before they could say "sacre bleu!," mysterious clouds billowed from the tank. When the smoke cleared, Courtois noticed dark crystals on all the surfaces that had come into contact with the fumes. When he had them analyzed, they turned out to be a previously unknown element, which he named iodine, after the Greek word for "violet." Iodine, plentiful in saltwater, is concentrated in seaweed. It was soon discovered that goiters, enlargements of the thyroid gland, were caused by a lack of iodine in the diet. So, in addition to its other uses, iodine is now routinely added to table salt.

3. Penicillin (1928)

Mistake Leading to Discovery: Living like a pig
Lesson Learned: It helps to gripe to your friends about your job

Scottish scientist Alexander Fleming had a, shall we say, relaxed attitude toward a clean working environment. His desk was often littered with small glass dishes—a fact that is fairly alarming considering that they were filled with bacteria cultures scraped from boils, abscesses and infections. Fleming allowed the cultures to sit around for weeks, hoping something interesting would turn up, or perhaps that someone else would clear them away.

Finally one day, Fleming decided to clean the bacteria-filled dishes and dumped them into a tub of disinfectant. His discovery was about to be washed away when a friend happened to drop by the lab to chat with the scientist. During their discussion, Fleming griped good-naturedly about all the work he had to do and dramatized the point by grabbing the top dish in the tub, which was (fortunately) still above the surface of the water and cleaning agent. As he did, Fleming suddenly noticed a dab of fungus on one side of the dish, which had killed the bacteria nearby. The fungus turned out to be a rare strain of penicillium that had drifted onto the dish from an open window.

Fleming began testing the fungus and found that it killed deadly bacteria, yet was harmless to human tissue. However, Fleming was unable to produce it in any significant quantity and didn't believe it would be effective in treating disease. Consequently, he downplayed its potential in a paper he presented to the scientific community. Penicillin might have ended there as little more than a medical footnote, but luckily, a decade later, another team of scientists followed up on Fleming's lead. Using more sophisticated techniques, they were able to successfully produce one of the most life-saving drugs in modern medicine.

4. The Telephone (1876)

Mistake Leading to Discovery: Poor foreign language skills
Lesson Learned: A little German is better than none

In the 1870s, engineers were working to find a way to send multiple messages over one telegraph wire at the same time. Intrigued by the challenge, Alexander Graham Bell began experimenting with possible solutions. After reading a book by Hermann Von Helmholtz, Bell got the idea to send sounds simultaneously over a wire instead. But as it turns out, Bell's German was a little rusty, and the author had mentioned nothing about the transmission of sound via wire. Too late for Bell though; the inspiration was there, and he had already set out to do it.

The task proved much more difficult than Bell had imagined. He and his mechanic, Thomas Watson, struggled to build a device that could transmit sound. They finally succeeded, however, and came up with the telephone.

5. Photography (1835)

Mistake Leading to Discovery: Not doing the dishes
Lesson Learned: Put off today what you can do tomorrow

Between 1829 and 1835, Louis Jacques Mandé Daguerre was close to becoming the first person to develop a practical process for producing photographs. But he wasn't home yet.

Daguerre had figured out how to expose an image onto highly polished plates covered with silver iodide, a substance known to be sensitive to light. However, the images he was producing on these polished plates were barely visible, and he didn't know how to make them darker.

After producing yet another disappointing image one day, Daguerre tossed the silverized plate in his chemical cabinet, intending to clean it off later. But when he went back a few days later, the image had darkened to the point where it was perfectly visible. Daguerre realized that one of the chemicals in the cabinet had somehow reacted with the silver iodide, but he had no way of know which one it was, and there were a whole lot of chemicals in that cabinet.

For weeks, Daguerre took one chemical out of the cabinet every day and put in a newly exposed plate. But every day, he found a less-than-satisfactory image. Finally, as he was testing the very last chemical, he got the idea to put the plate in the now-empty cabinet, as he had done the first time. Sure enough, the image on the plate darkened. Daguerre carefully examined the shelves of the cabinet and found what he was looking for. Weeks earlier, a thermometer in the cabinet had broken, and Daguerre (being the slob that he was) didn't clean up the mess very well, leaving a few drops of mercury on the shelf. Turns out, it was the mercury vapor interacting with the silver iodide that produced the darker image. Daguerre incorporated mercury vapor into his process, and the Daguerreotype photograph was born.

6. Mauve Dye (1856)

Mistake Leading to Discovery: Delusions of grandeur
Lesson Learned: Real men wear mauve

In 1856, an 18-year-old British chemistry student named William Perkin attempted to develop a synthetic version of quinine, the drug commonly used to treat malaria. It was a noble cause, but the problem was, he had no idea what he was doing.

Perkin started by mixing aniline (a colorless, oily liquid derived from coal-tar, a waste product of the steel industry) with propylene gas and potassium dichromate. It's a wonder he didn't blow himself to bits, but the result was just a disappointing black mass stuck to the bottom of his flask. As Perkin started to wash out the container, he noticed that the black substance turned the water purple, and after playing with it some more, he discovered that the purple liquid could be used to dye cloth.

With financial backing from his wealthy father, Perkin began a dye-making business, and his synthetic mauve colorant soon became popular. Up until the time of Perkin's discovery, natural purple dye had to be extracted from Mediterranean mollusks, making it extremely expensive. Perkin's cheap coloring not only jumpstarted the synthetic dye industry (and gave birth to the colors used in J.Crew catalogs), it also sparked the growth of the entire field of organic chemistry.

7. Nylon (1934)

Mistake Leading to Discovery: Workplace procrastination
Lesson Learned: When the cat's away, the mice should play

In 1934, researchers at DuPont were charged with developing synthetic silk. But after months of hard work, they still hadn't found what they were looking for, and the head of the project, Wallace Hume Carothers, was considering calling it quits. The closest they had come was creating a liquid polymer that seemed chemically similar to silk, but in its liquid form wasn't very useful. Deterred, the researchers began testing other, seemingly more promising substances called polyesters.

One day, a young (and apparently bored) scientist in the group noticed that if he gathered a small glob of polyester on a glass stirring rod, he could use it to pull thin strands of the material from the beaker. And for some reason (prolonged exposure to polyester fumes, perhaps?) he found this hilarious. So on a day when boss-man Carothers was out of the lab, the young researcher and his co-workers started horsing around and decided to have a competition to see who could draw the longest threads from the beaker. As they raced down the hallway with the stirring rods, it dawned on them: By stretching the substance into strands, they were actually re-orienting the molecules and making the liquid material solid.

Ultimately, they determined that the polyesters they were playing with couldn't be used in textiles, like DuPont wanted, so they turned to their previously unsuccessful silk-like polymer. Unlike the polyester, it could be drawn into solid strands that were strong enough to be woven. This was the first completely synthetic fiber, and they named the material Nylon.

8. Vulcanized Rubber (1844)

Mistake Leading to Discovery: Obsession combined with butterfingers
Lesson Learned: A little clumsiness can go a long way

In the early 19th century, natural rubber was relatively useless. It melted in hot weather and became brittle in the cold. Plenty of people had tried to "cure" rubber so it would be impervious to temperature changes, but no one had succeeded "– that is, until Charles Goodyear stepped in (or so he claims). According to his own version of the tale, the struggling businessman became obsessed with solving the riddle of rubber, and began mixing rubber with sulfur over a stove. One day, he accidentally spilled some of the mixture onto the hot surface, and when it charred like a piece of leather instead of melting, he knew he was onto something.

The truth, according to well-documented sources, is somewhat different. Apparently, Goodyear learned the secret of combining rubber and sulfur from another early experimenter. And it was one of his partners who accidentally dropped a piece of fabric impregnated with the rubber and sulfur mixture onto a hot stove. But it was Goodyear who recognized the significance of what happened, and he spent months trying to find the perfect combination of rubber, sulfur and high heat. (Goodyear also took credit for coining the term "vulcanization" for the process, but the word was actually first used by an English competitor.) Goodyear received a patent for the process in 1844, but spent the rest of his life defending his right to the discovery. Consequently, he never grew rich and, in fact, wound up in debtors prison more than once. Ironically, rubber became a hugely profitable industry years later, with the Goodyear Tire & Rubber Co. at the forefront.

This article originally appeared in a 2009 issue of mental_floss magazine.

For the First Time Ever, a Woman Has Won the Abel Prize—Math's Version of the Nobel Prize

iStock.com/perfectlab
iStock.com/perfectlab

Every year since 2003, the Norwegian Academy of Science and Letters has bestowed the Abel Prize for excellence and contributions in the field of mathematics. Every year, the recipient has been a man. In 2019, Karen Uhlenbeck crushed that dubious tradition and became the first woman to win the Abel Prize and its $700,000 award.

An emeritus professor at the University of Texas at Austin, Uhlenbeck’s work is focused on gauge theory and geometric analysis—the latter a field she pioneered. Gauge theory supports theoretical physics and is involved in the research of particle physics and string theory. Uhlenbeck is also credited with work that led to greater comprehension of the unification of forces, a primary objective in physics that attempts to link electromagnetic force and weak nuclear force with strong nuclear force in a single theory, which would help us understand the universe.

Mathematician and Abel Prize winner Karen Uhlenbeck is seen in a portrait
Courtesy of the University of Texas at Austin

Uhlenbeck arrived at UT Austin in 1987 and stayed after her retirement in 2014. During that time, she co-founded several programs, including the Saturday Morning Math Group and Distinguished Women in Mathematics lecture series, both in Texas, as well as the Park City Mathematics Institute and the Woman and Mathematics program at the Institute for Advanced Study in Princeton, New Jersey.

She achieved another milestone in her field in 1990, when she became the second woman (and the first since 1932) to host a plenary lecture at the International Congress of Mathematicians.

The Abel Prize, which is modeled after the Nobel Prize, is named after Norwegian mathematician Niels Hendrik Abel. Uhlenbeck will receive the prize in Oslo on May 21.

[h/t New Scientist]

12 Intriguing Facts About the Intestines

When we talk about the belly, gut, or bowels, what we're really talking about are the intestines—long, hollow, coiled tubes that comprise a major part of the digestive tract, running from the stomach to the anus. The intestines begin with the small intestine, divided into three parts whimsically named the duodenum, jejunum, and ileum, which absorb most of the nutrients from what we eat and drink. Food then moves into the large intestine, or colon, which absorbs water from the digested food and expels it into the rectum. That's when sensitive nerves in your rectum create the sensation of needing to poop.

These organs can be the source of intestinal pain, such as in irritable bowel syndrome, but they can also support microbes that are beneficial to your overall health. Here are some more facts about your intestines.

1. The intestines were named by medieval anatomists.

Medieval anatomists had a pretty good understanding of the physiology of the gut, and are the ones who gave the intestinal sections their names, which are still used today in modern anatomy. When they weren't moralizing about the organs, they got metaphorical about them. In 1535, the Spanish doctor Andrés Laguna noted that because the intestines "carry the chyle and all the excrement through the entire region of the stomach as if through the Ocean Sea," they could be likened to "those tall ships which as soon as they have crossed the ocean come to Rouen with their cargoes on their way to Paris but transfer their cargoes at Rouen into small boats for the last stage of the journey up the Seine."

2. Leonardo da Vinci believed the intestines helped you breathe.

Leonardo mistakenly believed the digestive system aided respiratory function. In 1490, he wrote in his unpublished notebooks, "The compressed intestines with the condensed air which is generated in them, thrust the diaphragm upwards; the diaphragm compresses the lungs and expresses the air." While that isn't anatomically accurate, it is true that the opening of the lungs is helped by the relaxation of stomach muscles, which does draw down the diaphragm.

3. Your intestines could cover two tennis courts ...

Your intestines take up a whole lot of square footage inside you. "The surface area of the intestines, if laid out flat, would cover two tennis courts," Colby Zaph, a professor of immunology in the department of biochemistry and molecular biology at Melbourne's Monash University, tells Mental Floss. The small intestine alone is about 20 feet long, and the large intestine about 5 feet long.

4. ... and they're pretty athletic.

The process of moving food through your intestines requires a wave-like pattern of muscular action, known as peristalsis, which you can see in action during surgery in this YouTube video.

5. Your intestines can fold like a telescope—but that's not something you want to happen.

Intussusception is the name of a condition where a part of your intestine folds in on itself, usually between the lower part of the small intestine and the beginning of the large intestine. It often presents as severe intestinal pain and requires immediate medical attention. It's very rare, and in children may be related to a viral infection. In adults, it's more commonly a symptom of an abnormal growth or polyp.

6. Intestines are very discriminating.

"The intestines have to discriminate between good things—food, water, vitamins, good bacteria—and bad things, such as infectious organisms like viruses, parasites and bad bacteria," Zaph says. Researchers don't entirely know how the intestines do this. Zaph says that while your intestines are designed to keep dangerous bacteria contained, infectious microbes can sometimes penetrate your immune system through your intestines.

7. The small intestine is covered in "fingers" ...

The lining of the small intestine is blanketed in tiny finger-like protrusions known as villi. These villi are then covered in even tinier protrusions called microvilli, which help capture food particles to absorb nutrients, and move food on to the large intestine.

8. ... And you can't live without it.

Your small intestine "is the sole point of food and water absorption," Zaph says. Without it, "you'd have to be fed through the blood."

9. The intestines house your microbiome. 

The microbiome is made up of all kinds of microorganisms, including bacteria, viruses, fungi, and protozoans, "and probably used to include worm parasites too," says Zaph. So in a way, he adds, "we are constantly infected with something, but it [can be] helpful, not harmful."

10. Intestines are sensitive to change.

Zaph says that many factors change the composition of the microbiome, including antibiotics, foods we eat, stress, and infections. But in general, most people's microbiomes return to a stable state after these events. "The microbiome composition is different between people and affected by diseases. But we still don't know whether the different microbiomes cause disease, or are a result in the development of disease," he says.

11. Transferring bacteria from one gut to another can transfer disease—or maybe cure it.

"Studies in mice show that transplanting microbes from obese mice can transfer obesity to thin mice," Zaph says. But transplanting microbes from healthy people into sick people can be a powerful treatment for some intestinal infections, like that of the bacteria Clostridium difficile, he adds. Research is pouring out on how the microbiome affects various diseases, including multiple sclerosis, Parkinson's, and even autism.

12. The microbes in your intestines might influence how you respond to medical treatments.

Some people don't respond to cancer drugs as effectively as others, Zaph says. "One reason is that different microbiomes can metabolize the drugs differently." This has huge ramifications for chemotherapy and new cancer treatments called checkpoint inhibitors. As scientists learn more about how different bacteria metabolize drugs, they could possibly improve how effective existing cancer treatments are.

SECTIONS

arrow
LIVE SMARTER