The Quick 10: The Previous Names of 10 Airports

I leave for vacation on Sunday, so I'm a little preoccupied with getting the house in order, getting laundry done, printing confirmations, getting the dogs kennelled at the vet, etc. I'm explaining all of this just so you can tell where I'm coming from with today's Q10. Enjoy!

1. LaGuardia, New York "“ It was originally Glenn H. Curtiss Airport, then North Beach Airport, and finally, Fiorello H. La Guardia Airport after the former mayor of New York.

2. JFK, New York - Originally Idlewild, Major General Alexander E. Anderson Airport, then New York International. Even though John F. Kennedy was assassinated in November of 1963, people scrambled to get the airport renamed in his honor - the task was completed by the end of the year.

3. LAX, L.A. "“ When it was just a dirt landing strip, it was Mines Field, and held that name even after it became an official airport. In 1941 it was renamed Los Angeles Airport, and then Los Angeles International Airport, AKA LAX, in 1949.

4. Logan, Boston "“ On opening day in 1923, it was called Boston Airport.

Then, when the Massachusetts Air Guard and Army Air Corps were pretty much the only ones using it, it was called Jeffery Field. It was renamed after Bostonian and Spanish-American War hero General Edward Lawrence Logan in 1956.

5. Ronald Reagan National Airport, D.C. "“ Well, it used to be two airports that merged "“ Hoover Field, located close to where the Pentagon is today, and Washington Airport, pretty much right next door. They merged and became the creatively-named Washington-Hoover Airport. Then in 1941, it became Washington National Airport. President Clinton had it renamed in 1998 to commemorate Ronald Reagan's 87th birthday. That decision wasn't a popular one with the aviation industry - Reagan fired more than 11,000 air traffic controllers who went on strike in 1981. The Washington Metropolitan Transit Authority at first refused to rename the metro station that went to the airport, but eventually gave in. I bet there are still ATCs who still refer to it only as Washington National or National.

6. Heathrow, London "“ The Great Western Aerodome (back when it was privately owned in the 1930s).

7. de Gaulle, Paris "“ Aéroport de Paris Nord, renamed after Charles de Gaulle in 1974. Random fact, "˜cause I'm a font nerd: the font Frutiger was created by Adrian Frutiger specifically for use at the airport, although it was called Roissy at the time. Frutiger designed Univers, too.

8. McCarran, Las Vegas "“ Davy Crockett descendant George Crockett established McCarren as Alamo Airport in 1942. Clark County bought it in 1948 and renamed it the Clark County Public Airport "“ briefly. That same year they named it after Nevada Senator Pat McCarran.

mccoy9. Orlando International, Orlando "“ Like a lot of other airports, this one started out as Air Force property. During WWII, it was called Pinecastle Army Airfield, then McCoy Air Force Base. When it was decided to make it a joint military/civilian airport in 1962, the civilian side was referred to as the Orlando Jetport at McCoy. The Air Force left that base in 1975, and in 1976, the airport became Orlando International Airport.

10. O'Hare, Chicago "“ Originally it was Orchard Place Airport/Douglas Field, which is why we call it ORD (where the "R" comes from, I don't know). Douglas Aircraft Company's contract was up in 1945, so the name changes to Orchard Field Airport. Then, in 1949, it was renamed O'Hare to honor Lt. Cmdr. Edward "Butch" O'Hare, who was awarded the Medal of Honor for his flying in WWII.

Live Smarter
Nervous About Asking for a Job Referral? LinkedIn Can Now Do It for You

For most people, asking for a job referral can be daunting. What if the person being approached shoots you down? What if you ask the "wrong" way? LinkedIn, which has been aggressively establishing itself as a catch-all hub for employment opportunities, has a solution, as Mashable reports.

The company recently launched "Ask for a Referral," an option that will appear to those browsing job listings. When you click on a job listed by a business that also employs one of your LinkedIn first-degree connections, you'll have the opportunity to solicit a referral from that individual.

The default message that LinkedIn creates is somewhat generic, but it hits the main topics—namely, prompting you to explain how you and your connection know one another and why you'd be a good fit for the position. If you're the one being asked for a referral, the site will direct you to the job posting and offer three prompts for a response, ranging from "Sure…" to "Sorry…".

LinkedIn says the referral option may not be available for all posts or all users, as the feature is still being rolled out. If you do see the option, it will likely pay to take advantage of it: LinkedIn reports that recruiters who receive both a referral and a job application from a prospective hire are four times more likely to contact that individual.

[h/t Mashable]

Dean Mouhtaropoulos/Getty Images
Essential Science
What Is a Scientific Theory?
Dean Mouhtaropoulos/Getty Images
Dean Mouhtaropoulos/Getty Images

In casual conversation, people often use the word theory to mean "hunch" or "guess": If you see the same man riding the northbound bus every morning, you might theorize that he has a job in the north end of the city; if you forget to put the bread in the breadbox and discover chunks have been taken out of it the next morning, you might theorize that you have mice in your kitchen.

In science, a theory is a stronger assertion. Typically, it's a claim about the relationship between various facts; a way of providing a concise explanation for what's been observed. The American Museum of Natural History puts it this way: "A theory is a well-substantiated explanation of an aspect of the natural world that can incorporate laws, hypotheses and facts."

For example, Newton's theory of gravity—also known as his law of universal gravitation—says that every object, anywhere in the universe, responds to the force of gravity in the same way. Observational data from the Moon's motion around the Earth, the motion of Jupiter's moons around Jupiter, and the downward fall of a dropped hammer are all consistent with Newton's theory. So Newton's theory provides a concise way of summarizing what we know about the motion of these objects—indeed, of any object responding to the force of gravity.

A scientific theory "organizes experience," James Robert Brown, a philosopher of science at the University of Toronto, tells Mental Floss. "It puts it into some kind of systematic form."


A theory's ability to account for already known facts lays a solid foundation for its acceptance. Let's take a closer look at Newton's theory of gravity as an example.

In the late 17th century, the planets were known to move in elliptical orbits around the Sun, but no one had a clear idea of why the orbits had to be shaped like ellipses. Similarly, the movement of falling objects had been well understood since the work of Galileo a half-century earlier; the Italian scientist had worked out a mathematical formula that describes how the speed of a falling object increases over time. Newton's great breakthrough was to tie all of this together. According to legend, his moment of insight came as he gazed upon a falling apple in his native Lincolnshire.

In Newton's theory, every object is attracted to every other object with a force that’s proportional to the masses of the objects, but inversely proportional to the square of the distance between them. This is known as an “inverse square” law. For example, if the distance between the Sun and the Earth were doubled, the gravitational attraction between the Earth and the Sun would be cut to one-quarter of its current strength. Newton, using his theories and a bit of calculus, was able to show that the gravitational force between the Sun and the planets as they move through space meant that orbits had to be elliptical.

Newton's theory is powerful because it explains so much: the falling apple, the motion of the Moon around the Earth, and the motion of all of the planets—and even comets—around the Sun. All of it now made sense.


A theory gains even more support if it predicts new, observable phenomena. The English astronomer Edmond Halley used Newton's theory of gravity to calculate the orbit of the comet that now bears his name. Taking into account the gravitational pull of the Sun, Jupiter, and Saturn, in 1705, he predicted that the comet, which had last been seen in 1682, would return in 1758. Sure enough, it did, reappearing in December of that year. (Unfortunately, Halley didn't live to see it; he died in 1742.) The predicted return of Halley's Comet, Brown says, was "a spectacular triumph" of Newton's theory.

In the early 20th century, Newton's theory of gravity would itself be superseded—as physicists put it—by Einstein's, known as general relativity. (Where Newton envisioned gravity as a force acting between objects, Einstein described gravity as the result of a curving or warping of space itself.) General relativity was able to explain certain phenomena that Newton's theory couldn't account for, such as an anomaly in the orbit of Mercury, which slowly rotates—the technical term for this is "precession"—so that while each loop the planet takes around the Sun is an ellipse, over the years Mercury traces out a spiral path similar to one you may have made as a kid on a Spirograph.

Significantly, Einstein’s theory also made predictions that differed from Newton's. One was the idea that gravity can bend starlight, which was spectacularly confirmed during a solar eclipse in 1919 (and made Einstein an overnight celebrity). Nearly 100 years later, in 2016, the discovery of gravitational waves confirmed yet another prediction. In the century between, at least eight predictions of Einstein's theory have been confirmed.


And yet physicists believe that Einstein's theory will one day give way to a new, more complete theory. It already seems to conflict with quantum mechanics, the theory that provides our best description of the subatomic world. The way the two theories describe the world is very different. General relativity describes the universe as containing particles with definite positions and speeds, moving about in response to gravitational fields that permeate all of space. Quantum mechanics, in contrast, yields only the probability that each particle will be found in some particular location at some particular time.

What would a "unified theory of physics"—one that combines quantum mechanics and Einstein's theory of gravity—look like? Presumably it would combine the explanatory power of both theories, allowing scientists to make sense of both the very large and the very small in the universe.


Let's shift from physics to biology for a moment. It is precisely because of its vast explanatory power that biologists hold Darwin's theory of evolution—which allows scientists to make sense of data from genetics, physiology, biochemistry, paleontology, biogeography, and many other fields—in such high esteem. As the biologist Theodosius Dobzhansky put it in an influential essay in 1973, "Nothing in biology makes sense except in the light of evolution."

Interestingly, the word evolution can be used to refer to both a theory and a fact—something Darwin himself realized. "Darwin, when he was talking about evolution, distinguished between the fact of evolution and the theory of evolution," Brown says. "The fact of evolution was that species had, in fact, evolved [i.e. changed over time]—and he had all sorts of evidence for this. The theory of evolution is an attempt to explain this evolutionary process." The explanation that Darwin eventually came up with was the idea of natural selection—roughly, the idea that an organism's offspring will vary, and that those offspring with more favorable traits will be more likely to survive, thus passing those traits on to the next generation.


Many theories are rock-solid: Scientists have just as much confidence in the theories of relativity, quantum mechanics, evolution, plate tectonics, and thermodynamics as they do in the statement that the Earth revolves around the Sun.

Other theories, closer to the cutting-edge of current research, are more tentative, like string theory (the idea that everything in the universe is made up of tiny, vibrating strings or loops of pure energy) or the various multiverse theories (the idea that our entire universe is just one of many). String theory and multiverse theories remain controversial because of the lack of direct experimental evidence for them, and some critics claim that multiverse theories aren't even testable in principle. They argue that there's no conceivable experiment that one could perform that would reveal the existence of these other universes.

Sometimes more than one theory is put forward to explain observations of natural phenomena; these theories might be said to "compete," with scientists judging which one provides the best explanation for the observations.

"That's how it should ideally work," Brown says. "You put forward your theory, I put forward my theory; we accumulate a lot of evidence. Eventually, one of our theories might prove to obviously be better than the other, over some period of time. At that point, the losing theory sort of falls away. And the winning theory will probably fight battles in the future."


More from mental floss studios