The Killilea Family: Where Are They Now?

I first read With Love from Karen years ago when I was home sick with pneumonia. When I was well enough to go to the library, I checked out the author's first book, Karen, and basically read the story of the Killilea family in reverse.

To summarize, Karen was born (in 1940) three months premature and wasn't expected to survive. She spent her first nine months in what would now be called a neo-natal intensive care unit, and when she finally went home her parents noticed that something was amiss with their daughter. Her limbs seemed unusually stiff, she never rolled over in her crib, nor did she make an effort to reach for the toys offered to her. Several years went by before they were able to get a diagnosis of Cerebral Palsy, and even more time elapsed before they found a specialist who could treat Karen. Marie worked tirelessly to find and unite other parents of CP children and eventually helped to found the Cerebral Palsy Association.

Over the years, I'd occasionally re-read WLFK and wonder whatever happened to Karen and her family. I checked out the title at and found that there were lots of other Karen readers out there who were wondering the same thing. I sensed a research project, and spent many hours online and in the library. I found out that there was still much tragedy ahead for the Killilea family.

karen-fire-little-red-house.jpgA large part of WLFK focused on the love story between Gloria (Karen's eldest sister) and Russ, who had to wait seven long years (due to Russ' annulment of a previous union and the couple's desire to marry in the Catholic church) before Pope Pius XII gave them permission to be married. The births of their first two children, Mary deLourdes and Evelyn Ann, were mentioned in the book, as was a very detailed description of the "Little Red House" in Yorktown where Glo and Russ lived. Sadly, that charming house built in the 1700s and described in minute detail by Marie ("everything was dry and there was that sweet odor of time that only really old houses have") turned out to be deadly; one late night in 1968 a faulty wire in the kitchen ignited a fire that quickly spread throughout the ancient wooden frame of the house. Gloria was able to rescue her two sons, but Mary and Evelyn were trapped on the third floor, along with their cousin Michelle Smiley (daughter of Little Marie), and the three children perished in the blaze.

Glo and Russ were married for just over 40 years and died within three months of one another in 2001/02. They are survived by their two sons. Little Marie divorced Ronald Smiley and eventually remarried. Rory is married and lives in Seattle. Kristin married her high school sweetheart, Simon Viltz, and lives in Illinois. Karen lives on her own in a specially equipped apartment and works as a secretary at a Catholic Retreat. Big Marie died in 1991 of respiratory failure (she'd previously battled two bouts of lung cancer), and her beloved husband, Jimmy, who was suffering from Alzheimer's Disease, passed away two years later.

So that's the follow-up story behind one of my favorite books. What are your favorite "based on a true story" or biographical books? Do you have a particular story that you once read and have occasionally wondered "I wonder whatever happened to"¦.?" This is your opportunity to send the mental_floss staff on a research mission and perhaps enlighten many other readers who have similarly wondered in silence.

Live Smarter
Nervous About Asking for a Job Referral? LinkedIn Can Now Do It for You

For most people, asking for a job referral can be daunting. What if the person being approached shoots you down? What if you ask the "wrong" way? LinkedIn, which has been aggressively establishing itself as a catch-all hub for employment opportunities, has a solution, as Mashable reports.

The company recently launched "Ask for a Referral," an option that will appear to those browsing job listings. When you click on a job listed by a business that also employs one of your LinkedIn first-degree connections, you'll have the opportunity to solicit a referral from that individual.

The default message that LinkedIn creates is somewhat generic, but it hits the main topics—namely, prompting you to explain how you and your connection know one another and why you'd be a good fit for the position. If you're the one being asked for a referral, the site will direct you to the job posting and offer three prompts for a response, ranging from "Sure…" to "Sorry…".

LinkedIn says the referral option may not be available for all posts or all users, as the feature is still being rolled out. If you do see the option, it will likely pay to take advantage of it: LinkedIn reports that recruiters who receive both a referral and a job application from a prospective hire are four times more likely to contact that individual.

[h/t Mashable]

Dean Mouhtaropoulos/Getty Images
Essential Science
What Is a Scientific Theory?
Dean Mouhtaropoulos/Getty Images
Dean Mouhtaropoulos/Getty Images

In casual conversation, people often use the word theory to mean "hunch" or "guess": If you see the same man riding the northbound bus every morning, you might theorize that he has a job in the north end of the city; if you forget to put the bread in the breadbox and discover chunks have been taken out of it the next morning, you might theorize that you have mice in your kitchen.

In science, a theory is a stronger assertion. Typically, it's a claim about the relationship between various facts; a way of providing a concise explanation for what's been observed. The American Museum of Natural History puts it this way: "A theory is a well-substantiated explanation of an aspect of the natural world that can incorporate laws, hypotheses and facts."

For example, Newton's theory of gravity—also known as his law of universal gravitation—says that every object, anywhere in the universe, responds to the force of gravity in the same way. Observational data from the Moon's motion around the Earth, the motion of Jupiter's moons around Jupiter, and the downward fall of a dropped hammer are all consistent with Newton's theory. So Newton's theory provides a concise way of summarizing what we know about the motion of these objects—indeed, of any object responding to the force of gravity.

A scientific theory "organizes experience," James Robert Brown, a philosopher of science at the University of Toronto, tells Mental Floss. "It puts it into some kind of systematic form."


A theory's ability to account for already known facts lays a solid foundation for its acceptance. Let's take a closer look at Newton's theory of gravity as an example.

In the late 17th century, the planets were known to move in elliptical orbits around the Sun, but no one had a clear idea of why the orbits had to be shaped like ellipses. Similarly, the movement of falling objects had been well understood since the work of Galileo a half-century earlier; the Italian scientist had worked out a mathematical formula that describes how the speed of a falling object increases over time. Newton's great breakthrough was to tie all of this together. According to legend, his moment of insight came as he gazed upon a falling apple in his native Lincolnshire.

In Newton's theory, every object is attracted to every other object with a force that’s proportional to the masses of the objects, but inversely proportional to the square of the distance between them. This is known as an “inverse square” law. For example, if the distance between the Sun and the Earth were doubled, the gravitational attraction between the Earth and the Sun would be cut to one-quarter of its current strength. Newton, using his theories and a bit of calculus, was able to show that the gravitational force between the Sun and the planets as they move through space meant that orbits had to be elliptical.

Newton's theory is powerful because it explains so much: the falling apple, the motion of the Moon around the Earth, and the motion of all of the planets—and even comets—around the Sun. All of it now made sense.


A theory gains even more support if it predicts new, observable phenomena. The English astronomer Edmond Halley used Newton's theory of gravity to calculate the orbit of the comet that now bears his name. Taking into account the gravitational pull of the Sun, Jupiter, and Saturn, in 1705, he predicted that the comet, which had last been seen in 1682, would return in 1758. Sure enough, it did, reappearing in December of that year. (Unfortunately, Halley didn't live to see it; he died in 1742.) The predicted return of Halley's Comet, Brown says, was "a spectacular triumph" of Newton's theory.

In the early 20th century, Newton's theory of gravity would itself be superseded—as physicists put it—by Einstein's, known as general relativity. (Where Newton envisioned gravity as a force acting between objects, Einstein described gravity as the result of a curving or warping of space itself.) General relativity was able to explain certain phenomena that Newton's theory couldn't account for, such as an anomaly in the orbit of Mercury, which slowly rotates—the technical term for this is "precession"—so that while each loop the planet takes around the Sun is an ellipse, over the years Mercury traces out a spiral path similar to one you may have made as a kid on a Spirograph.

Significantly, Einstein’s theory also made predictions that differed from Newton's. One was the idea that gravity can bend starlight, which was spectacularly confirmed during a solar eclipse in 1919 (and made Einstein an overnight celebrity). Nearly 100 years later, in 2016, the discovery of gravitational waves confirmed yet another prediction. In the century between, at least eight predictions of Einstein's theory have been confirmed.


And yet physicists believe that Einstein's theory will one day give way to a new, more complete theory. It already seems to conflict with quantum mechanics, the theory that provides our best description of the subatomic world. The way the two theories describe the world is very different. General relativity describes the universe as containing particles with definite positions and speeds, moving about in response to gravitational fields that permeate all of space. Quantum mechanics, in contrast, yields only the probability that each particle will be found in some particular location at some particular time.

What would a "unified theory of physics"—one that combines quantum mechanics and Einstein's theory of gravity—look like? Presumably it would combine the explanatory power of both theories, allowing scientists to make sense of both the very large and the very small in the universe.


Let's shift from physics to biology for a moment. It is precisely because of its vast explanatory power that biologists hold Darwin's theory of evolution—which allows scientists to make sense of data from genetics, physiology, biochemistry, paleontology, biogeography, and many other fields—in such high esteem. As the biologist Theodosius Dobzhansky put it in an influential essay in 1973, "Nothing in biology makes sense except in the light of evolution."

Interestingly, the word evolution can be used to refer to both a theory and a fact—something Darwin himself realized. "Darwin, when he was talking about evolution, distinguished between the fact of evolution and the theory of evolution," Brown says. "The fact of evolution was that species had, in fact, evolved [i.e. changed over time]—and he had all sorts of evidence for this. The theory of evolution is an attempt to explain this evolutionary process." The explanation that Darwin eventually came up with was the idea of natural selection—roughly, the idea that an organism's offspring will vary, and that those offspring with more favorable traits will be more likely to survive, thus passing those traits on to the next generation.


Many theories are rock-solid: Scientists have just as much confidence in the theories of relativity, quantum mechanics, evolution, plate tectonics, and thermodynamics as they do in the statement that the Earth revolves around the Sun.

Other theories, closer to the cutting-edge of current research, are more tentative, like string theory (the idea that everything in the universe is made up of tiny, vibrating strings or loops of pure energy) or the various multiverse theories (the idea that our entire universe is just one of many). String theory and multiverse theories remain controversial because of the lack of direct experimental evidence for them, and some critics claim that multiverse theories aren't even testable in principle. They argue that there's no conceivable experiment that one could perform that would reveal the existence of these other universes.

Sometimes more than one theory is put forward to explain observations of natural phenomena; these theories might be said to "compete," with scientists judging which one provides the best explanation for the observations.

"That's how it should ideally work," Brown says. "You put forward your theory, I put forward my theory; we accumulate a lot of evidence. Eventually, one of our theories might prove to obviously be better than the other, over some period of time. At that point, the losing theory sort of falls away. And the winning theory will probably fight battles in the future."


More from mental floss studios