CLOSE
Original image

The Large Hadron Collider: What Could Possibly Go Wrong?

Original image

This morning, at 3 a.m. EST, the European Organization for Nuclear Research (CERN), flipped the switch and circulated the first proton beam around the Large Hadron Collider (LHC).

The LHC, for those of you that have been hiding on Mars, in a cave, with your fingers in your ears, is the world's largest particle accelerator (the underground circular tunnel its housed in has a circumference of 17 miles and straddles the border between Switzerland and France, crossing it at four points). By colliding opposing beams of protons, CERN scientists intend to fill in the gaps that currently exist in the Standard Model, re-create the conditions that existed an instant after the big bang and get their hands on the Higgs Boson, the only particle predicted by the Standard Model that hasn't been found.

The idea of a ginormous particle accelerator knocking protons into each other at nearly the speed of light has some people"¦concerned. Despite the analysis performed by the LHC Safety Study Group, their conclusion that the LHC posed no conceivable threat, a second review by the LHC Safety Assessment Group and their conclusion that the LHC wasn't dangerous, two lawsuits, one in the U.S. and one in Europe, have been filed to keep the hadrons from colliding (if you were wondering, a hadron is bound group of quarks, and also really easy to misspell as hardon).

What are these people so worried about? Well, just the little matter of doomsday"¦

Back in (micro) Black (holes)

Much of the legal challenge to the LHC revolves around the slim chance that two quarks, one from each proton beam zipping around the collider, both endowed with immense energy inherited from the protons that contain them, could get too close to each other, collapse under their own gravitational interaction and create a small black hole. That gravitational interaction, many physicists have noted, needs to be really strong, though. For any scenario where a black hole pops up in the LHC we'd have to assume the existence of extra dimensions accessible to gravitons (the hypothetical particles that mediate the force of gravity), but not the other particles at play in the collider.

A planet-eating (or even a Switzerland-eating) black hole being created by the LHC would be, in a word, a long-shot. We've got room for error, though. The same reasoning that suggests creating black holes is possible also says that those black holes will evaporate because of a process called Hawking radiation. As much as black holes suck, they also radiate some energy out. The intensity of this radiation is determined by the temperature of the black hole, which is inversely proportional to its mass, so the very tiny black holes that the LHC might maybe manage to create would only be there for a fraction of a second before evaporating.

Keeping Proton Beams in Line

Even if a black hole comes and goes in the blink of an eye, the LHC is still a serious piece of machinery. During operation, the two proton beams will carry a total energy of 724 megajoules, equivalent to the energy of 380 pounds of TNT detonating. But it gets better! The magnets that keep the proton beams on their path during experiments will have a total stored energy of 10 gigajoules. That's the same amount of energy created by 2.4 tons of TNT going off.

With that much energy in one place, even small malfunction could be disastrous. Once the particles are set loose on their demolition derby, is there any way to shutdown the whole operation if there's a technical problem?

Well, duh. CERN spent almost two decades devising a system of fail-safes for the collider. The longer the proton beams whip around the track, the greater the chance that they'll become unstable, so CERN does the same thing to the beams that the nuns did to me in grade school: make them stand in the corner and think about what they've done.

When its time to replace the beams, the old ones are deflected by "kicker" magnets out of their circular path and steered by "septum" magnets (if you're thinking that the LHC is the world's largest collection of weird magnets, you're wrong; that would be my grandmother's fridge) into absorbers called beam dump blocks.

On its way to the dump block, the beam passes through "“ you guessed it "“ more magnets, which fan the protons out and lower the beam's intensity. Inside the beam dump cavern is the block, a 10-ton, 27-foot long graphite cylinder encased in steel and concrete. Quite a roadblock, but still easy enough for the proton beam to eat through, so CERN engineered things so that the beam is "scanned" onto the cylinder in a pattern instead of hitting it at just one point with full strength.

Original image
iStock
arrow
Live Smarter
A Simple Way to Charge Your iPhone in 5 Minutes
Original image
iStock

Spotting the “low battery” notification on your phone is usually followed by a frantic search for an outlet and further stress over the fact that you may not have time for a full charge. On iPhones, plugging your device into the wall for five minutes might result in only a modest increase of about three percent or so. But this tip from Business Insider Tech may allow you to squeeze out a little more juice.

The trick? Before charging, put your phone in Airplane Mode so that you reduce the number of energy-sucking tasks (signal searching, fielding incoming communications) your device will try and perform.

Next, take the cover off if you have one (the phone might be generating extra heat as a result). Finally, try to use an iPad adapter, which has demonstrated a faster rate of charging than the adapter that comes with your iPhone.

Do that and you’ll likely double your battery boost, from about three to six percent. It may not sound like much, but that little bit of extra juice might keep you connected until you’re able to plug it in for a full charge.

[h/t Business Insider Tech]

Original image
iStock
arrow
Live Smarter
Trying to Save Money? Avoid Shopping on a Smartphone
Original image
iStock
Today, Americans do most of their shopping online—but as anyone who’s indulged in late-night retail therapy likely knows, this convenience often can come with an added cost. Trying to curb expenses, but don't want to swear off the convenience of ordering groceries in your PJs? New research shows that shopping on a desktop computer instead of a mobile phone may help you avoid making foolish purchases, according to Co. Design. Ying Zhu, a marketing professor at the University of British Columbia-Okanagan, recently led a study to measure how touchscreen technology affects consumer behavior. Published in the Journal of Retailing and Consumer Services, her research found that people are more likely to make more frivolous, impulsive purchases if they’re shopping on their phones than if they’re facing a computer monitor. Zhu, along with study co-author Jeffrey Meyer of Bowling Green State University, ran a series of lab experiments on student participants to observe how different electronic devices affected shoppers’ thinking styles and intentions. Their aim was to see if subjects' purchasing goals changed when it came to buying frivolous things, like chocolate or massages, or more practical things, like food or office supplies. In one experiment, participants were randomly assigned to use a desktop or a touchscreen. Then, they were presented with an offer to purchase either a frivolous item (a $50 restaurant certificate for $30) or a useful one (a $50 grocery certificate for $30). These subjects used a three-point scale to gauge how likely they were to purchase the offer, and they also evaluated how practical or frivolous each item was. (Participants rated the restaurant certificate to be more indulgent than the grocery certificate.) Sure enough, the researchers found that participants had "significantly higher" purchase intentions for hedonic (i.e. pleasurable) products when buying on touchscreens than on desktops, according to the study. On the flip side, participants had significantly higher purchase intentions for utilitarian (i.e. practical) products while using desktops instead of touchscreens. "The playful and fun nature of the touchscreen enhances consumers' favor of hedonic products; while the logical and functional nature of a desktop endorses the consumers' preference for utilitarian products," Zhu explains in a press release. The study also found that participants using touchscreen technology scored significantly higher on "experiential thinking" than subjects using desktop computers, whereas those with desktop computers demonstrated higher scores for rational thinking. “When you’re in an experiential thinking mode, [you crave] excitement, a different experience,” Zhu explained to Co. Design. “When you’re on the desktop, with all the work emails, that interface puts you into a rational thinking style. While you’re in a rational thinking style, when you assess a product, you’ll look for something with functionality and specific uses.” Zhu’s advice for consumers looking to conserve cash? Stow away the smartphone when you’re itching to splurge on a guilty pleasure. [h/t Fast Company]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios