Original image

6 Things You Probably Don't Know About Oil

Original image

1. A Spoonful of Sugar made the Crude Oil go down

Originally a byproduct of drilling for salt, early encounters with oil were considered a nuisance. It was either scooped up and disposed of, or soaked up in a rag, wrung out, and peddled as medicine. At the time, oil was thought of as a cure all for everything - from headaches to rheumatism to deafness. A bottle of oil-medicine with a picture of a derrick drilling for salt gave George Bissell, the same guy who figured out oil could turn into kerosene, the notion that he could use similar technology to drill for rock oil. (More at An Empire of Wealth)

2. Petroleum means "rock oil" in Latin

Yep. petra: a rock + oleum: oil.

3. Oil isn't actually stored or shipped in barrels

Picture 31.pngThough it's priced and traded in the stock market in barrels, the 42-gallon unit of measurement is just that - a unit of measurement. The introduction of the oil tanker in 1850 quickly replaced the barrel. In 1885, 99% of oil exported from the US was carried in barrels. Ten years later, almost all of it was carried in tankers that could lug the equivalent of 4 million barrels at a time.

4. The first oil was stored in whiskey barrels

So, why exactly are barrels the unit of measurement for oil ? Mainly, because the first oilmen used whisky barrels to collect the oil after striking their first gushers. According to The Prize, oil certainly gushed, and at one point oil was priced down so much (or barrels were in such demand & scarcity) that the wooden barrel was worth twice as much as the oil in it.

5. Oil drink your milkshake

Picture 16.pngThe oil used on screen in There Will Be Blood was actually created using the same industrial material used by McDonald's to thicken their milkshakes. "And I'm not kidding. That's actually true," said cinematographer Robert Elswit on CNN's Oscar Blog.

6. Oil saved the whales from extinction

Oil's first use was to replace whale blubber in lamps. That's right, before oil, as early as 1645, whale oil was used to light lamps and blubber was used to make candle wax. Sperm whales had oil superior to other whales, and had larger heads filled with spermaceti, a waxy substance that made the best candles. By the 1770s, New England was exporting 3-4,000 pounds of spermaceti candles a year. But whales became less and less abundant due to excess whaling, and by the early 1850s the oil became a scarce commodity that demanded a high price.

Other forms of illumination were explored, including a form of turpentine and converting coal tar into kerosene . Finally, a professor named George Bissell conceived that "rock oil" could be turned into kerosene.

Learn more about what Diana learned today, here.

Original image
iStock // Ekaterina Minaeva
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Scientists Think They Know How Whales Got So Big
May 24, 2017
Original image

It can be difficult to understand how enormous the blue whale—the largest animal to ever exist—really is. The mammal can measure up to 105 feet long, have a tongue that can weigh as much as an elephant, and have a massive, golf cart–sized heart powering a 200-ton frame. But while the blue whale might currently be the Andre the Giant of the sea, it wasn’t always so imposing.

For the majority of the 30 million years that baleen whales (the blue whale is one) have occupied the Earth, the mammals usually topped off at roughly 30 feet in length. It wasn’t until about 3 million years ago that the clade of whales experienced an evolutionary growth spurt, tripling in size. And scientists haven’t had any concrete idea why, Wired reports.

A study published in the journal Proceedings of the Royal Society B might help change that. Researchers examined fossil records and studied phylogenetic models (evolutionary relationships) among baleen whales, and found some evidence that climate change may have been the catalyst for turning the large animals into behemoths.

As the ice ages wore on and oceans were receiving nutrient-rich runoff, the whales encountered an increasing number of krill—the small, shrimp-like creatures that provided a food source—resulting from upwelling waters. The more they ate, the more they grew, and their bodies adapted over time. Their mouths grew larger and their fat stores increased, helping them to fuel longer migrations to additional food-enriched areas. Today blue whales eat up to four tons of krill every day.

If climate change set the ancestors of the blue whale on the path to its enormous size today, the study invites the question of what it might do to them in the future. Changes in ocean currents or temperature could alter the amount of available nutrients to whales, cutting off their food supply. With demand for whale oil in the 1900s having already dented their numbers, scientists are hoping that further shifts in their oceanic ecosystem won’t relegate them to history.

[h/t Wired]