Original image

Creatively Speaking: Hillary Carlip

Original image

book.jpgCreatively Speaking continues today with Hillary Carlip. Longtime readers of this blog might recall my review of her hilarious memoir, Queen of the Oddballs. Now she's got another book out called À la Cart, a collection of curious, but very real shopping lists she's found over the last decades. Check out my interview with her below, as well as the very cool trailer she's put together for the book.

And be sure to tune in tomorrow to enter our Famous Historical Figure Shopping List Contest to win a FREE copy of À la Cart. Hillary will be helping us pick the finalists!

DI: Amy Sedaris says she wishes she came up with the idea for this book first. I'd have to agree with her. So tell us: How did you come up with the idea?

HC: I've been collecting found grocery shopping lists for years "“ decades, really. I've always been fascinated by how much you can tell about a person from their abandoned list. To me, shopping lists are the new memoir.

DI: Was there ever the temptation to fictionalize some of the lists to make them even funnier?

HC: Totally no need to. There are some that I don't think I could ever have come up with: "Mouse Traps. Cheese. Mouse." (Yeah, for real!) or "Whole Milk. Heavy Cream. Ice Cream. String Cheese. Gas-Ex (!!!)" (Complete with the three exclamation points!). To me, the humor comes in the quirkiness of these real people showing their humanity.

DI: Where'd you get the wonderful idea to dress up and impersonate the characters you imagined wrote these things?

HC: Whenever I find a shopping list, I immediately imagine who it is that goes with the list. I have a background in performance art and doing characters (in fact two of the personas I created once ended up on Entertainment Tonight in the same week, without anyone ever knowing they were both me), so it was only natural to take it to the next step and BECOME the shoppers. Also in À la Cart I wrote stories about each, delving even further into their psyches and lives.

DI: I loved the flash presentation you put together to promote the book. I understand you made it all by yourself. For the design-savvy in the blog, how did you make it?

HC: Thanks! Since À la Cart is a little offbeat, I found myself explaining the premise a lot. So I decided to just make a short film explaining it all. I first wrote out the script, then collected or created all the images in Photoshop, storyboarding it. I have a busy web design biz, so I had one of my brilliant programmers put it all into flash. After that, we scored it with music and that was that.

DI: I hear you've been around the country on book tour recently. Is it true you're not just doing bookstores, but also supermarkets? Really? Supermarkets???

HC: That was my plan, but it didn't quite work out logistically. But I HAVE been doing quite a bit of press in the supermarkets. I took a reporter from Entertainment Weekly grocery shopping (and dumpster diving for lists!) and also one from Wall Street Journal "“ which was filmed and included on the WSJ website. (You can see the video on my site at:

DI: What's going on with Fresh Yarn? I know we have a lot of creative writers reading our blog. Can they still submit? Is the Web site still up and running?

HC: YES!! I recently celebrated the 4th anniversary of FRESH YARN, my literary site devoted to personal essays. I am still doing it all, though more sporadically (I started out featuring new installments of 6 personal essays every other week, then went to every three weeks, once a month, and now when time allows!) It's been such a pleasure to be able to share the talents of established writers (novelists, screenwriters, journalists, etc) as well as previously unpublished writers. I just launched installment #52 last week so there are FRESH essays up now (plus 4 years of archived pieces)!

DI: What are you working on these days?

HC: Mostly promoting A la Cart right now. I'm finishing up a tour, still doing interviews, radio and TV appearances, etc. Also doing FRESH YARN and Fly HC, and daydreaming about the next book!

Browse through past Creatively Speaking posts here >>

Original image
iStock // Ekaterina Minaeva
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Scientists Think They Know How Whales Got So Big
May 24, 2017
Original image

It can be difficult to understand how enormous the blue whale—the largest animal to ever exist—really is. The mammal can measure up to 105 feet long, have a tongue that can weigh as much as an elephant, and have a massive, golf cart–sized heart powering a 200-ton frame. But while the blue whale might currently be the Andre the Giant of the sea, it wasn’t always so imposing.

For the majority of the 30 million years that baleen whales (the blue whale is one) have occupied the Earth, the mammals usually topped off at roughly 30 feet in length. It wasn’t until about 3 million years ago that the clade of whales experienced an evolutionary growth spurt, tripling in size. And scientists haven’t had any concrete idea why, Wired reports.

A study published in the journal Proceedings of the Royal Society B might help change that. Researchers examined fossil records and studied phylogenetic models (evolutionary relationships) among baleen whales, and found some evidence that climate change may have been the catalyst for turning the large animals into behemoths.

As the ice ages wore on and oceans were receiving nutrient-rich runoff, the whales encountered an increasing number of krill—the small, shrimp-like creatures that provided a food source—resulting from upwelling waters. The more they ate, the more they grew, and their bodies adapted over time. Their mouths grew larger and their fat stores increased, helping them to fuel longer migrations to additional food-enriched areas. Today blue whales eat up to four tons of krill every day.

If climate change set the ancestors of the blue whale on the path to its enormous size today, the study invites the question of what it might do to them in the future. Changes in ocean currents or temperature could alter the amount of available nutrients to whales, cutting off their food supply. With demand for whale oil in the 1900s having already dented their numbers, scientists are hoping that further shifts in their oceanic ecosystem won’t relegate them to history.

[h/t Wired]