Original image

How Did You Know Bill Pearson and Adam Constable?

Original image

This must have been a much harder puzzle than I thought when I first put it together. Usually we get dozens and dozens of emails with the correct answers to the week's challenges. Today, only 7!

Before I show you the winners' logic, I need some reader feedback for my next quiz:

1) Was the final puzzle too hard?
2) Were the individual challenges too hard?
3) Did the final trivia category (baseball) turn you off?
4) Any other thoughts this time around?

Most of those who did write in this time, did have most of the answers correct. Adam Constable, who won last month's HDYK? contest worked with Bill Pearson over the course of the week and the two of them sent in the following answers/logic. We'll let them fight it out over who gets the book and who gets the t-shirt.

Meanwhile, see you toward the end of May for the next puzzle...

[The winning email(s) after the jump]


Song1 "“ Let the good times Roll "“ The Cars

Song2 "“ I'll Be Loving You (Forever) - New Kids On The Block

Song3 "“ Voices Carry "“ "˜Til Tuesday

Song4 "“ Walk this Way "“ AeroSmith

Song5 "“ Walk Away - DropKick Murphy's

City - Boston


Q1 "“ Magic Square

Q2 "“ sum=2060

Q3 "“ order=5

Q4 "“ Missing Square = 400


1) North Carolina "“ 6) Ohio

2) Washington "“ 7) Iowa

3) Arkansas "“ 8) Kansas

4) South Dakota "“ 9) Utah

5) New Hampshire "“ 10) Maine

Kansas City


Q1 - Leon Czolgosz

Q2 "“ William McKinley and Theodore Roosevelt

Q3 "“ McKinley was assassinated by Czolgosz making Roosevelt president

Baseball Player - Ted Williams

Ted Williams 400th career home run gave Boston a victory over Kansas City.

Ted Williams 400th career home run was hit on July 18, 1956 and as he crossed home plate, he spit in the direction of the sportswriters

Original image
iStock // Ekaterina Minaeva
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Name the Author Based on the Character
May 23, 2017
Original image